In embedding methods such as those labeled commonly as QM/MM, the embedding operator is frequently approximated by the electrostatic potential generated by nuclei and electrons in the environment. Such approximation is especially useful in studies of the potential energy surface of embedded species. The effect on energy of neglecting the non-Coulombic component of the embedding operator is corrected a posteriori.
View Article and Find Full Text PDFThe importance of the nonelectrostatic component of the embedding potential is investigated by comparing the complexation induced shifts of the iso-g obtained in embedding calculations to its supermolecular counterparts. The analyses are made in view of such multilevel simulations, for which supermolecular strategy is either impractical or impossible, such as the planned simulations for the whole enzyme ferredoxin oxidoreductase. For the biliverdin radical surrounded by a few amino acids, it is shown that the embedding potential comprising only Coulomb terms fails to reproduce even qualitatively the shifts evaluated from supermolecular calculations.
View Article and Find Full Text PDFLaser resonant two-photon ionization UV spectra provide clear evidence that the effect of increasing the length of the hydrogen-bonded chain consisting of molecules such as NH(3), H(2)O, or CH(3)OH on the pi --> pi* excitations of cis-7-hydroxyquinoline (cis-7HQ) is strongly cooperative [ Thut ; et al. J. Phys.
View Article and Find Full Text PDF