Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation.
View Article and Find Full Text PDFBackground: -regulatory elements (CREs) play crucial roles in regulating gene expression during erythroid cell differentiation. Genome-wide erythroid-specific CREs have not been characterized in chicken erythroid cells, which is an organism model used to study epigenetic regulation during erythropoiesis.
Methods: Analysis of public genome-wide accessibility (ATAC-seq) maps, along with transcription factor (TF) motif analysis, CTCF, and RNA Pol II occupancy, as well as transcriptome analysis in fibroblasts and erythroid HD3 cells, were used to characterize erythroid-specific CREs.
Background: ESR1 is expressed by 60-70% of breast tumours. it's a good prognosis factor and the target of hormone therapy. Optimization of ESR1 reactivation therapy is currently ongoing.
View Article and Find Full Text PDFelements are primate-specific repeats and represent the most abundant type of transposable elements (TE) in the human genome. Genome-wide analysis of the enrichment of histone post-translational modifications suggests that human sequences could function as transcriptional enhancers; however, no functional experiments have evaluated the role of sequences in the control of transcription . The present study analyses the regulatory activity of a human sequence from the family located in the second intron of the long intergenic non-coding RNA , found in divergent orientation to the gene.
View Article and Find Full Text PDFChromosomes are organized into high-frequency chromatin interaction domains called topologically associating domains (TADs), which are separated from each other by domain boundaries. The molecular mechanisms responsible for TAD formation are not yet fully understood. In Drosophila, it has been proposed that transcription is fundamental for TAD organization while the participation of genetic sequences bound by architectural proteins (APs) remains controversial.
View Article and Find Full Text PDFChromatin regulation and organization are essential processes that regulate gene activity. The CCCTC-binding factor (CTCF) is a protein with different and important molecular functions related with chromatin dynamics. It is conserved since invertebrates to vertebrates, posing it as a factor with an important role in the physiology.
View Article and Find Full Text PDFBackground: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells.
View Article and Find Full Text PDFThe three-dimensional architecture of genomes provides new insights about genome organization and function, but many aspects remain unsolved at the local genomic scale. Here we investigate the regulation of two erythroid-specific loci, a folate receptor gene (FOLR1) and the β-globin gene cluster, which are separated by 16kb of constitutive heterochromatin. We found that in early erythroid differentiation the FOLR1 gene presents a permissive chromatin configuration that allows its expression.
View Article and Find Full Text PDFCellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression.
View Article and Find Full Text PDFThe multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) were recently shown to regulate chromatin remodelling activities. Their function in regulating gene expression switching during specific developmental stages is poorly understood. Here we describe a nuclear, non-coding transcript responsive for the stage-specific activation of the chicken adult α(D) globin gene.
View Article and Find Full Text PDFGenomic loci composed of more than one gene are frequently subjected to differential gene expression, with the chicken α-globin domain being a clear example. In the present study we aim to understand the globin switching mechanisms responsible for the epigenetic silencing of the embryonic π gene and the transcriptional activation of the adult α(D) and α(A) genes at the genomic domain level. In early stages, we describe a physical contact between the embryonic π gene and the distal 3' enhancer that is lost later during development.
View Article and Find Full Text PDFGenome organization into transcriptionally active domains denotes one of the first levels of gene expression regulation. Although the chromatin domain concept is generally accepted, only little is known on how domain organization impacts the regulation of differential gene expression. Insulators might hold answers to address this issue as they delimit and organize chromatin domains.
View Article and Find Full Text PDFSwitching in hemoglobin gene expression is an informative paradigm for studying transcriptional regulation. Here we determined the patterns of chicken alpha-globin gene expression during development and erythroid differentiation. Previously published data suggested that the promoter regions of alpha-globin genes contain the complete information for proper developmental regulation.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2007
At the present time research situates differential regulation of gene expression in an increasingly complex scenario based on interplay between genetic and epigenetic information networks, which need to be highly coordinated. Here we describe in a comparative way relevant concepts and models derived from studies on the chicken alpha- and beta-globin group of genes. We discuss models for globin switching and mechanisms for coordinated transcriptional activation.
View Article and Find Full Text PDFStudying the chicken alpha-globin domain as a model system of gene regulation, we have previously identified contiguous silencer-enhancer elements located on the 3'-side of the domain. To better characterize the enhancer we performed a systematic functional analysis to define its expression influence range and the ubiquitous and stage-specific transcriptional regulators interacting with this control element. In contrast to previous reports, we found that, in addition to a core element that includes three GATA-1 binding sites, the enhancer incorporates a 120 base-pair DNA fragment where EKLF, NF-E2 and a fourth GATA-1 factor could interact.
View Article and Find Full Text PDF