Background: Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex.
View Article and Find Full Text PDFThe agouti viable yellow (A) allele is an insertional mutation in the mouse genome caused by a variably methylated intracisternal A particle (VM-IAP) retrotransposon. A expressivity is sensitive to a range of early-life chemical exposures and nutritional interventions, suggesting that environmental perturbations can have long-lasting effects on the methylome. However, the extent to which VM-IAP elements are environmentally labile with phenotypic implications is unknown.
View Article and Find Full Text PDFThe mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results in transgenerational epigenetic inheritance of congenital malformations. Either maternal grandparent can initiate this phenomenon, which persists for at least four wildtype generations.
View Article and Find Full Text PDFAssisted reproduction technologies (ARTs) are becoming increasingly common. Therefore, how these procedures influence gene regulation and foeto-placental development are important to explore. Here, we assess the effects of blastocyst transfer on mouse placental growth and transcriptome.
View Article and Find Full Text PDFRecent research has focussed on the significance of folate metabolism in male fertility. Knocking down the mouse gene Mtrr impedes the progression of folate and methionine metabolism and results in hyperhomocysteinaemia, dysregulation of DNA methylation and developmental phenotypes (e.g.
View Article and Find Full Text PDFKey Points: Folate (folic acid) deficiency and mutations in folate-related genes in humans result in megaloblastic anaemia. Folate metabolism, which requires the enzyme methionine synthase reductase (MTRR), is necessary for DNA synthesis and the transmission of one-carbon methyl groups for cellular methylation. In this study, we show that the hypomorphic Mtrr mutation in mice results in late-onset and sex-specific blood defects, including macrocytic anaemia, extramedullary haematopoiesis and lymphopenia.
View Article and Find Full Text PDFThe exposure to adverse environmental conditions (e.g. poor nutrition) may lead to increased disease risk in an individual and their descendants.
View Article and Find Full Text PDF