Publications by authors named "Georgina A Rivera-Ingraham"

Exposure to environmental changes often results in the production of reactive oxygen species (ROS), which, if uncontrolled, leads to loss of cellular homeostasis and oxidative distress. However, at physiological levels these same ROS are known to be key players in cellular signaling and the regulation of key biological activities (oxidative eustress). While ROS are known to mediate salinity tolerance in plants, little is known for the animal kingdom.

View Article and Find Full Text PDF

Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g.

View Article and Find Full Text PDF

Physiological and morphological acclimation capacities of black-chinned tilapia, Sarotherodon melanotheron were studied from fish to gill cell level when fish are maintained in freshwater, seawater, and hypersaline conditions. Fish osmoregulatory capacity, gill ionocyte morphology, osmo-respiratory compromise, O consumption rate, branchial antioxidative defense, and cell apoptosis were considered. Captive juvenile tilapias were maintained in controlled freshwater conditions (FW: 0.

View Article and Find Full Text PDF

The scallop is an important resource for Chilean and Peruvian aquaculture. Seed availability from commercial hatcheries is critical due to recurrent massive mortalities associated with bacterial infections, especially during the veliger larval stage. The immune response plays a crucial role in counteracting the effects of such infections, but being energetically costly, it potentially competes with the physiological and morphological changes that occur during early development, which are equally expensive.

View Article and Find Full Text PDF

Mangrove crabs are ecosystem engineers through their bioturbation activity. On Mayotte Island, the abundance of Neosarmatium africanum decreased in wastewater-impacted areas. Previous analyses showed that global crab metabolism is impacted by wastewater, with a burst in O consumption that may be caused by osmo-respiratory trade-offs since gill functioning was impacted.

View Article and Find Full Text PDF

The role of ecophysiology in mediating marine biological pollution is poorly known. Here we explore how physiological plasticity to environmental stress can explain and predict the context-dependencies of invasive species impacts. We use the case of two sympatric skeleton shrimps, the invader Caprella scaura and its congener C.

View Article and Find Full Text PDF

Space launchers often use aluminized-solid fuel ("propergol") as propellant and its combustion releases tons of AlO and HCl that sink in terrestrial and aquatic environments, polluting and decreasing water pH. We studied the impact of these events on the biochemical/physiological performance of the freshwater shrimp Macrobrachium jelskii, with wild specimens collected from a non-impacted site in French Guiana. In the laboratory, shrimps were exposed for one week to: i) undisturbed conditions; ii) AlO exposure (0.

View Article and Find Full Text PDF

Mussels are worldwide bioindicators in pollution monitoring since they fulfil the requirements for being good sentinels. However, some methodological concerns arise in the use of particular biomarkers, particularly those displaying low enzymatic rates and/or limited responsiveness to chemicals and biological-related variability. In the present study, the suitability of oxidative stress and detoxification parameters when using mussels as sentinels of polycyclic aromatic hydrocarbon (PAH) pollution is addressed.

View Article and Find Full Text PDF

Mangroves are tidal wetlands that are often under strong anthropogenic pressures, despite the numerous ecosystem services they provide. Pollution from urban runoffs is one such threats, yet some mangroves are used as a bioremediation tool for wastewater (WW) treatment. This practice can impact mangrove crabs, which are key engineer species of the ecosystem.

View Article and Find Full Text PDF

Freezing, dehydration, salinity variations, hypoxia or anoxia are some of the environmental constraints that many organisms must frequently endure. Organisms adapted to these stressors often reduce their metabolic rates to maximize their chances of survival. However, upon recovery of environmental conditions and basal metabolic rates, cells are affected by an oxidative burst that, if uncontrolled, leads to (oxidative) cell damage and eventually death.

View Article and Find Full Text PDF

Intertidal experience rapid transgression to hypoxia when they close their valves during low tide. This induces a physiological stress response aiming to stabilize tissue perfusion against declining oxygen partial pressure in shell water. We hypothesized that nitric oxide (NO) accumulation supports blood vessel opening in hypoxia and used live imaging techniques to measure NO and superoxide anion ( ) formation in hypoxia-exposed gill filaments.

View Article and Find Full Text PDF

Immune responses, as well as reproduction, are energy-hungry processes, particularly in broadcast spawners such as scallops. Thus, we aimed to explore the potential reproduction-immunity trade-off in , a species with great economic importance for Chile and Peru. Hemocytes, key immunological cells in mollusks, were the center of this study, where we addressed for the first time the relation between reproductive stage, hemocyte metabolic energetics and their capacity to support immune responses at cellular and molecular levels.

View Article and Find Full Text PDF

Salinity is one of the main environmental factors determining coastal species distribution. However, in the specific case of mangrove crabs, salinity selection cannot be understood through ecological approaches alone. Yet understanding this issue is crucial in the context of mangrove conservation, since this ecosystem is often used as biofilter of (low- salinity) wastewater.

View Article and Find Full Text PDF

Mangroves are increasingly used as biofiltering systems of (pre-treated) domestic effluents. However, these wastewater discharges may affect local macrofauna. This laboratory study investigates the effects of wastewater exposure on the mangrove spider crab Neosarmatium meinerti, a key engineering species which is known to be affected by waste waters in effluent-impacted areas.

View Article and Find Full Text PDF

Osmoregulation is by no means an energetically cheap process, and its costs have been extensively quantified in terms of respiration and aerobic metabolism. Common products of mitochondrial activity are reactive oxygen and nitrogen species, which may cause oxidative stress by degrading key cell components, while playing essential roles in cell homeostasis. Given the delicate equilibrium between pro- and antioxidants in fueling acclimation responses, the need for a thorough understanding of the relationship between salinity-induced oxidative stress and osmoregulation arises as an important issue, especially in the context of global changes and anthropogenic impacts on coastal habitats.

View Article and Find Full Text PDF

In the context of global change, there is an urgent need for researchers in conservation physiology to understand the physiological mechanisms leading to the acquisition of stress acclimation phenotypes. Intertidal organisms continuously cope with drastic changes in their environmental conditions, making them outstanding models for the study of physiological acclimation. As the implementation of such processes usually comes at a high bioenergetic cost, a mitochondrial/oxidative stress approach emerges as the most relevant approach when seeking to analyze whole-animal responses.

View Article and Find Full Text PDF

Intertidal species are more vulnerable to anthropogenic disturbances than others inhabiting subtidal and offshore habitats. Coastal development frequently results in trace-metal pollution. For endangered species such as Patella ferruginea it can be a high risk that leads local populations to extinction.

View Article and Find Full Text PDF

Background: Reactive oxygen (ROS) and nitrogen (RNS) species are produced during normal unstressed metabolic activity in aerobic tissues. Most analytical work uses tissue homogenates, and lacks spatial information on the tissue specific sites of actual ROS formation. Live-imaging techniques (LIT) utilize target-specific fluorescent dyes to visualize biochemical processes at cellular level.

View Article and Find Full Text PDF

Osmoregulating decapods such as the Mediterranean green crab Carcinus aestuarii possess two groups of spatially segregated gills: anterior gills serve mainly respiratory purposes, while posterior gills contain osmoregulatory structures. The co-existence of similar tissues serving different functions allows the study of differential adaptation, in terms of free radical metabolism, upon salinity change. Crabs were immersed for 2 weeks in seawater (SW, 37 ppt), diluted SW (dSW, 10 ppt) and concentrated SW (cSW, 45 ppt).

View Article and Find Full Text PDF

Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation.

View Article and Find Full Text PDF

Intertidal blue mussels, Mytilus edulis, experience hypoxia reoxygenation during tidal emersion and resubmersion cycles, and this is often suggested to represent a major stress for the animals, especially for their respiratory tissues, the gills. We exposed mussels to experimental short and prolonged anoxia and subsequent reoxygenation and analyzed the respiratory response in excised gill tissue and the effects of treatment on reactive oxygen species (mainly ROS: superoxide anion, O2·- and hydrogen peroxide, H2O2), formation using live imaging techniques and confocal microscopy. Our aim was to understand if this "natural stress" would indeed produce oxidative damage and whether antioxidant defenses are induced under anoxia, to prevent oxidative damage during reoxygenation.

View Article and Find Full Text PDF

Patella ferruginea Gmelin, 1791 is an endangered marine gastropod endemic to the Western Mediterranean. Its range is restricted to the Sardinian-Corsican region (SCR), North Africa, a few scattered sites in Southern Spain, and Sicily. Inter-simple sequence repeat (ISSR) markers and three different mitochondrial DNA (mtDNA) regions, Cytochrome c Oxidase subunit I, 12S (small-subunit ribosomal RNA gene) and 16S (large-subunit ribosomal RNA gene), were used to investigate the presence of genetic population structuring.

View Article and Find Full Text PDF