The objective of this study was to encapsulate anthocyanins from red onion skins into different biopolymeric matrices as a way to develop powders with multifunctional activities. Two different variants of powders were obtained using a combination of gelation and freeze-drying techniques and characterized by encapsulation efficiency, antioxidant activity, phytochemical content, and color. Stability during storage and the bioavailability of anthocyanins in the in vitro simulated digestion were also examined.
View Article and Find Full Text PDFIn this study, antioxidant-rich eggplant peel extract was used to obtain a value-added pastry cream. In order to reduce the susceptibility to degradation, microencapsulation of the biologically active compounds from the eggplant peel was first performed. The microencapsulated bioactive compounds powder (MBC) obtained through freeze-drying retained about 94.
View Article and Find Full Text PDFA family of fifteen quaternary ammonium salts (QAs), bearing the 1,2-bis(4-pyridyl)ethane core, were obtained using for the first time two different green methods, such as microwave (MW) and ultrasounds (US) irradiation, with very good yields and in much shorter times compared to the classical method, and an assay on their antimicrobial action against () was carried out. While 12 to 24 hours were required for complete alkylation of 1,2-bis(4-pyridyl)ethane by reactive halogenated derivatives in anhydrous solvent under reflux conditions, MW and US irradiation reduced the reaction time and the desired products were achieved in a few min. One of the aims of this study was to evaluate the antibacterial potential of the synthesized QAs against pathogenic bacteria, along with their impact on germination activity of wheat seeds (.
View Article and Find Full Text PDFThe interaction of flavonoids extracted from yellow onion skins with whey proteins isolate was studied using fluorescence spectroscopy and simulation methods from the perspectives of microencapsulation. The fluorescence spectroscopy revealed a static quenching mechanism and the involvement of van der Waals and H bonding in complexes formation. The in silico methods suggested that the heat treatment of the major whey proteins affected the binding pockets and therefore the affinity for the main flavonoids.
View Article and Find Full Text PDF