Publications by authors named "Georgiana F da Cruz"

In the present study, we applied forensic geochemistry to investigate the origin and fate of spilled oils like tarballs stranded at the beaches of Bahia, in northeastern Brazil, in September 2023, based on their fingerprints. Saturated and aromatic compounds were assessed by gas chromatography, and the oceanic surface circulation patterns were deciphered to determine the geographic origin of the spill. Contamination by petroleum represents an enormous threat to the unique, species-rich ecosystems of the study area.

View Article and Find Full Text PDF

Polysaccharides and their derivatives are used as additives in numerous petroleum industrial processes, especially in enhanced oil recovery (EOR). There exists however, a lack of studies concerning how their physicochemical properties affect the oil recovery process. This work presents an investigation of a series of 2-hydroxy-3-(trimethylammonium)propyl starches (HTPS) with different molar masses and cationic degrees that are potentially useful for EOR.

View Article and Find Full Text PDF

After the wide oil spill reached the northeast of Brazil, the resurgence of oil was recorded and to evaluate this oil in detail, two samples collected in the state of Pernambuco in 2019 and 2021 were submitted to multiple analytical techniques. For both, we have found similar saturated biomarkers and triaromatic steroid ratios, implying that they are from the same spilled source. The n-alkanes, isoprenoids, and cycloalkanes were almost completely degraded due to evaporation, photooxidation, and/or biodegradation processes.

View Article and Find Full Text PDF

Biosurfactants and waterflooding have been widely reported thus far for enhancing oil production. Nevertheless, there is a lack of literature to explore enhanced oil recovered methods effects on its chemical composition. The aim of this work is to investigate the effects of a biosurfactant produced by Bacillus safensis and brine injection on the recovered petroleum composition, and their implications for geochemical interpretation.

View Article and Find Full Text PDF

Here, we present a new application of desorption electrospray ionization (DESI) and laser ablation electrospray ionization (LAESI) mass spectrometry imaging to assess the spatial location of organic compounds, both polar and nonpolar, directly from rock surfaces. Three carbonaceous rocks collected from an aquatic environment and a berea sandstone subjected to a small-scale oil recovery experiment were analyzed by DESI and LAESI. No rock pretreatment was required before DESI and LAESI analyses.

View Article and Find Full Text PDF

To comprehensively understand the chemical changes over time of spilled oils subject to tropical climate conditions and the active weathering processes, a spill simulation experiment was conducted along 210 days with two distinct Brazilian oils (19 and 24 API) under irradiation and non-irradiation of sunlight. Isoprenoids and n-alkanes showed a great loss after 40 days for both oils under the two conditions due to evaporation. Diagnostic ratios of saturated biomarkers showed no changes, whereas the polycyclic aromatic hydrocarbons had a decreasing concentration under both conditions mainly due to evaporation.

View Article and Find Full Text PDF

The presence of acidic compounds as naphthenic acids in crude oil causes several problems for the petroleum industry, including corrosion in both upstream and downstream production processes. Based on this scenario, the main objective of this work was to investigate the removal of the acidic compound from two Brazilian heavy oils by adsorption processes using six potential adsorbents: powdered shale, activated carbon, bentonite, silica gel, powdered sandstone and powdered wood. These raw materials were previously characterized by conventional and surface analysis techniques, which show that they offer a good surface area and thermal stability.

View Article and Find Full Text PDF

In offshore oil wells it is very common to perform seawater injection through injection wells for hydrocarbon recovery. When seawater, rich in sulfate ion, mixes with formation water, whose composition can contain divalent cations such as barium and calcium, it often leads to sulfate salts formation due to their chemical incompatibility. These salts can cause serious damage in production wells.

View Article and Find Full Text PDF

Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively.

View Article and Find Full Text PDF

Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes.

View Article and Find Full Text PDF

Microbial oxidation potentials of extremophiles recovered from Pampo Sul oil field, Campos Basin, Brazil, in pure culture or in consortia, were investigated using high-throughput screening (HTS) and multibioreactions. Camphor (1), cis-jasmone (2), 2-methyl-cyclohexanone (3), 1,2-epoxyoctane (4), phenylethyl acetate (5), phenylethyl propionate (6), and phenylethyl octanoate (7) were used to perform multibioreaction assays. Eighty-two bacterial isolates were recovered from oil and formation water samples and those presenting outstanding activities in HTS assays were identified by sequencing their 16S rRNA genes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpfuart3rketlusmlm2105ohp4sslhjaf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once