Publications by authors named "Georgia Woods"

Background: In people, obesity is a risk factor for cardiovascular disease, associated with systemic hypertension, cardiac remodelling and systolic and diastolic dysfunction. Weight reduction can reverse myocardial remodelling and reduce risk of subsequent cardiovascular disease. In cats, far less is known regarding the effects of obesity and subsequent weight reduction on cardiovascular morphology and function.

View Article and Find Full Text PDF

We used CRISPR/Cas9 gene editing in in order to fluorescently tag endogenous aconitase-2 (ACO-2). ACO-2 is a mitochondrially localized protein, and the strain enabled the examination of native mitochondrial morphology in live animals. Here we validate that the strain displays the prototypic changes in mitochondrial morphology known to occur during aging and upon paraquat (PQ) induced mitochondrial stress.

View Article and Find Full Text PDF

Cellular senescence is a tumor-suppressive mechanism which leads to near irreversible proliferative arrest. However, senescent cells can cause tissue dysfunction, in large part because they express a senescence-associated secretory phenotype (SASP) involving secretion of, amongst other factors, proinflammatory cytokines known to compromise neuronal health. Therefore, established neurotoxicants may cause neurotoxicity in vivo, in part by triggering mitotic cells in the brain to undergo senescence and adopt an inflammatory SASP which in turn could cause deleterious effects to surrounding neurons.

View Article and Find Full Text PDF

Exposure to the herbicide paraquat (PQ) is associated with an increased risk of idiopathic Parkinson's disease (PD). Therapies based on PQ's presumed mechanisms of action have not, however, yielded effective disease therapies. Cellular senescence is an anticancer mechanism that arrests proliferation of replication-competent cells and results in a pro-inflammatory senescence-associated secretory phenotype (SASP) capable of damaging neighboring tissues.

View Article and Find Full Text PDF

Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic.

View Article and Find Full Text PDF

Changes in neuronal structure are thought to underlie long-term behavioral modifications associated with learning and memory. In particular, considerable evidence implicates the destabilization and retraction of dendritic spines along with the loss of spine synapses as an important cellular mechanism for refining brain circuits, yet the molecular mechanisms regulating spine elimination remain ill-defined. The postsynaptic density protein, PSD-95, is highly enriched in dendritic spines and has been associated with spine stability.

View Article and Find Full Text PDF

Biolistic transfection is a physical means of transfecting cells by bombarding tissue with high velocity DNA coated particles. We provide a detailed protocol for biolistic transfection of rat hippocampal slices, from the initial preparation of DNA coated bullets to the final shooting of the organotypic slice cultures using a gene gun. Gene gun transfection is an efficient and easy means of transfecting neurons and is especially useful for fluorescently labeling a small subset of cells in tissue slice.

View Article and Find Full Text PDF

Ephrin-As and their receptors, EphAs, are expressed in the developing cortex where they may act to organize thalamic inputs. Here, we map the visual cortex (V1) in mice deficient for ephrin-A2, -A3, and -A5 functionally, using intrinsic signal optical imaging and microelectrode recording, and structurally, by anatomical tracing of thalamocortical projections. V1 is shifted medially, rotated, and compressed and its internal organization is degraded.

View Article and Find Full Text PDF

In mammals, retinal ganglion cell (RGC) projections initially intermingle and then segregate into a stereotyped pattern of eye-specific layers in the dorsal lateral geniculate nucleus (dLGN). Here we found that in mice deficient for ephrin-A2, ephrin-A3 and ephrin-A5, eye-specific inputs segregated but the shape and location of eye-specific layers were profoundly disrupted. In contrast, mice that lacked correlated retinal activity did not segregate eye-specific inputs.

View Article and Find Full Text PDF