The European olive tree, L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS).
View Article and Find Full Text PDFFour leather substrates from different animals were treated by dispersions containing hydrophilic composite silica-hyperbranched poly(ethylene imine) xerogels. Antimicrobial activity was introduced by incorporating silver nanoparticles and/or benzalkonium chloride. The gel precursor solutions were also infused before gelation to titanium oxide powders typically employed for induction of self-cleaning properties.
View Article and Find Full Text PDFThe capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity.
View Article and Find Full Text PDFOdorant-dependent behaviors in insects are triggered by the binding of odorant ligands to the variable subunits of heteromeric olfactory receptors. Previous studies have shown, however, that specific odor binding to ORco, the common subunit of odorant receptor heteromers, may allosterically alter olfactory receptor function and profoundly affect subsequent behavioral responses. Using an insect cell-based screening platform, we identified and characterized several antagonists of the odorant receptor coreceptor of the African malaria vector Anopheles gambiae (AgamORco) in a small collection of natural volatile organic compounds.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2020
In this work we report a fast and efficient virtual screening protocol for discovery of novel bioinspired synthetic mosquito repellents with lower volatility and, in all likelihood, increased protection time as compared with their plant-derived parental compounds. Our screening protocol comprises two filtering steps. The first filter is based on the shape and chemical similarity to known plant-derived repellents, whereas the second filter is based on the predicted similarity of the ligand's binding mode to the Anopheles gambiae odorant binding protein (AgamOBP1) relative to that of DEET and Icaridin to the same OBP.
View Article and Find Full Text PDFContinuing our efforts towards understanding the principles governing ribosomal recognition and function, we have synthesized and evaluated a series of diversely functionalized 5,6-, 6,6- and 7,6-spiroethers. These compounds successfully mimic natural aminoglycosides regarding their binding to the decoding center of the bacterial ribosome. Their potential to inhibit prokaryotic protein production in vitro along with their antibacterial potencies have also been examined.
View Article and Find Full Text PDFAminoglycoside-antibiotics represent important tools for studying the biological functions of RNA. An orthogonal protection strategy applied on 2-deoxystreptamine (2-DOS) revealed a series of key intermediates that enable its regioselective functionalization. Our approach allowed the construction of selected representatives of triazole-containing analogues with diverse molecular frameworks for biological evaluation regarding their binding and antibacterial potencies.
View Article and Find Full Text PDFMuch physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery.
View Article and Find Full Text PDFThe potential of aminoglycoside antibiotics to induce premature stop codon read-through in eukaryotic systems has been reported recently, inspiring the evaluation of structural alterations within the Homo sapiens cytoplasmic decoding center on ligand binding. Here we report the employment of an affinity screen capable of monitoring conformational changes of adenines 1492 and 1493 in solution. Thus, changes induced by the presence of a ligand can be directly translated to binding affinities for the eukaryotic decoding center.
View Article and Find Full Text PDFThe bacterial ribosome represents the confirmed biological target for many known antibiotics that interfere with bacterial protein synthesis. Aminoglycosides represent a lead paradigm in RNA molecular recognition and constitute ideal starting points for the design and synthesis of novel RNA binders. Previous rational design approaches of RNA-targeting small molecules have been mainly concentrated on direct functionalization of aminoglycosidic substructures.
View Article and Find Full Text PDFPrevious work from our group described the synthesis and biological evaluation of new rigid, 6,6- and 6,7-spiro aminoglycosidic scaffolds targeting the bacterial ribosome. Herein we describe an improved synthetic protocol for their construction, and extend our study by further amino-functionalization of their 6,7-spiro analogs. The synthetic strategy, preparation and evaluation of some representative examples are reported.
View Article and Find Full Text PDF