Publications by authors named "Georgia Corner"

The mucus layer in the intestine affects several aspects of intestinal biology, encompassing physical, chemical protection, immunomodulation and growth, thus contributing to homeostasis. Mice with genetic inactivation of the gene, encoding the MUC2 mucin, the major protein component of mucus, exhibit altered intestinal homeostasis, which is strictly dependent on the habitat, likely due to differing complements of intestinal microbes. Our previous work established that deficiency was linked to low chronic inflammation resulting in tumor development in the small, large intestine including the rectum.

View Article and Find Full Text PDF

The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275.

View Article and Find Full Text PDF

An important mediator of tumorigenesis, the epidermal growth factor receptor (EGFR) is expressed in almost all non-transformed cell types, associated with tumor progression, angiogenesis and metastasis. The significance of the EGFR as a cancer therapeutic target is underscored by the clinical development of several different classes of EGFR antagonists, including monoclonal antibodies (mAb) and tyrosine kinase inhibitors. Extensive preclinical studies have demonstrated the anti-tumor effects of mAb806 against tumor xenografts overexpressing EGFR.

View Article and Find Full Text PDF
Article Synopsis
  • * A significant observation was that the intestinal-specific protein villin is down-regulated or absent in a large proportion of MSI CRC cases, and its loss is linked to poorly differentiated histology and worse outcomes for patients.
  • * The regulation of villin expression is influenced by the homeobox transcription factor Cdx-1, which, when either overexpressed or reduced, directly affects villin promoter activity, indicating that Cdx-1 loss contributes to the poor differentiation seen in these cancers.
View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of phosphatidylinositol 3-kinase (PI3K) signaling that is frequently inactivated in colorectal cancer through mutation, loss of heterozygosity, or epigenetic mechanisms. The aim of this study was to determine the effect of intestinal-specific PTEN inactivation on intestinal epithelial homeostasis and tumorigenesis. PTEN was deleted specifically in the intestinal epithelium, by crossing PTEN(Lox/Lox) mice with villin(Cre) mice.

View Article and Find Full Text PDF

Novel imaging of active transcription sites in interphase nuclei of intestinal epithelial cells in situ showed that key genes associated with Wnt and Notch signaling were dynamically regulated as the cells underwent normal maturation during their migration along the mouse crypt-villus axis (CVA). However, oscillating patterns of activation of these genes were displaced along this axis in the histologically normal intestinal mucosa of Apc(1638N/+) mice before tumor development. Gene expression profiling then showed that the normal reprogramming of cells along the CVA was dampened in the Apc(1638N/+) mice, with an overrepresentation of c-myc target genes among those loci affected in the mutant mice.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) induce growth arrest and apoptosis in colon cancer cells and are being considered for colon cancer therapy. The underlying mechanism of action of these effects is poorly defined with both transcription-dependent and -independent mechanisms implicated. We screened a panel of 30 colon cancer cell lines for sensitivity to HDACi-induced apoptosis and correlated the differences with gene expression patterns induced by HDACi in the five most sensitive and resistant lines.

View Article and Find Full Text PDF

The objective of this study was to gain insights into the biological basis of the metastatic process by characterizing the gene expression differences between primary and metastatic colon cancers. Recent studies have demonstrated that few new mutational changes are acquired during the metastatic progression of colon tumors [Jones et al., Proc Natl Acad Sci USA 105 (11): 4283-4288, 2008].

View Article and Find Full Text PDF

A defined rodent "new Western diet" (NWD), which recapitulates intake levels of nutrients that are major dietary risk factors for human colon cancer, induced colonic tumors when fed to wild-type C57Bl/6 mice for 1.5 to 2 years from age 6 weeks (two-thirds of their life span). Colonic tumors were prevented by elevating dietary calcium and vitamin D(3) to levels comparable with upper levels consumed by humans, but tumorigenesis was not altered by similarly increasing folate, choline, methionine, or fiber, each of which was also at the lower levels in the NWD that are associated with risk for colon cancer.

View Article and Find Full Text PDF

Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry.

View Article and Find Full Text PDF

As human colorectal cancer (CRC) cells metastasize to distant sites, they are susceptible to detachment-induced cell death or anoikis - a form of apoptosis that occurs when anchorage-dependent CRC cells go into suspension. Our goal was to identify whether tumor necrosis factor receptor apoptosis-inducing ligand (TRAIL) receptors mediate anoikis in human CRC cells. First, we assessed whether caspases of the extrinsic (caspase-8) or intrinsic (caspase-9) death pathways were involved.

View Article and Find Full Text PDF

Background & Aims: To define the genetic reprogramming that drives intestinal epithelial cell maturation along the crypt-villus axis, enterocytes were sequentially isolated from the villus tip to the crypts of mouse small intestine.

Methods: Changes in gene expression were assessed using 27,405-element complementary DNA microarrays (14,685 unique genes) and specific changes validated by Western blotting.

Results: A total of 1113 genes differentially expressed between the crypt and villus were identified.

View Article and Find Full Text PDF

Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is the most common chemotherapeutic agent used in the treatment of colorectal cancer, yet objective response rates are low. Recently, camptothecin (CPT) has emerged as an effective alternative therapy. Decisive means to determine treatment, based on the likelihood of response to each of these agents, could greatly enhance the management of this disease.

View Article and Find Full Text PDF

Endogenous interferon gamma (IFNgamma) promotes the host response to primary tumors, and IFNgamma-insensitive tumors display increased tumorigenicity and can evade tumor surveillance mechanisms. Here we demonstrate that activating mutations of Ki-ras are sufficient to inhibit the expression of STAT1 and STAT2, transcription factors required for signaling by IFNs, providing a potential mechanism for the insensitivity of tumors to IFNs. We demonstrated that colon cancer cell lines with Ki-ras mutations display reduced expression of IFN-responsive genes compared with the cell lines that have retained wild type Ras and that inactivation of the mutant Ki-ras allele in the HCT116 colon cancer cell line is sufficient to restore the expression of STAT1, STAT2, and IRF-9.

View Article and Find Full Text PDF

Methods for high-throughput analysis of profiles of gene expression that assay thousands of genes simultaneously are powerful approaches for understanding and classifying cell and tissue phenotype. This includes analysis of normal pathways of cell maturation and their perturbation in transformation, the sensitivity and mechanism of response of normal and tumor cells to physiological and pharmacological agents, and modulation of tumor risk and progression by nutritional factors. However, the complex data generated by such approaches raise difficulties in analysis.

View Article and Find Full Text PDF

Colonic epithelial cells undergo cell cycle arrest, lineage specific differentiation, and apoptosis, as they migrate along the crypt axis toward the lumenal surface. The Caco-2 colon carcinoma cell line models many of these phenotypic changes, in vitro. We used this model system and cDNA microarray analysis to characterize the genetic reprogramming that accompanies colon cell differentiation.

View Article and Find Full Text PDF