Publications by authors named "Georgia C Pickavance"

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the uncertainty in how tropical forests' carbon storage responds to climate change, particularly the effects of long-term drying and warming.
  • Analysis of 590 permanent plots across the tropics finds that maximum temperature significantly reduces aboveground biomass, affecting carbon storage more in hotter forests.
  • The results indicate that tropical forests have greater resilience to temperature changes than short-term studies suggest, emphasizing the need for forest protection and climate stabilization for long-term adaptation.
View Article and Find Full Text PDF
Article Synopsis
  • Structurally intact tropical forests contributed significantly to global carbon sequestration in the 1990s and early 2000s, absorbing about 15% of human-caused CO2 emissions.
  • A study comparing African and Amazonian forests found that while African forests have maintained a stable carbon sink over three decades, Amazonian forests are experiencing a long-term decline in carbon absorption due to increased tree mortality.
  • Recent trends suggest a potential increase in carbon losses in African forests post-2010, indicating that both regions are facing different challenges regarding their carbon sinks and may experience declines in the future.
View Article and Find Full Text PDF

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity.

View Article and Find Full Text PDF

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years.

View Article and Find Full Text PDF

The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha year (95% CI 0.14-0.

View Article and Find Full Text PDF

Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.

View Article and Find Full Text PDF

Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified.

View Article and Find Full Text PDF

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits.

View Article and Find Full Text PDF