Sci Total Environ
December 2023
In the period 1987-2017, a series of physical and chemical measurements related to oxygen variability at a trough area with a maximum depth of ~420 m in the West Saronikos Gulf, reveal the following: In the early 90s, deep winter mixing occurred resulting in an oxygenation down to ~420 m followed by an oxygen decline. This decline reached near-bottom hypoxic conditions (O < ~62 μM (μmol/L)) after 1998, while a denitrification phase occurred after 2000 and a complete bottom anoxia in 2005. In June 2012, an oxygenation down to ~350 m was detected that most likely occurred in winter 2012.
View Article and Find Full Text PDFThe aim of this work was to investigate the use of isobutanol as organic solvent for the efficient delignification and fractionation of beechwood through the OxiOrganosolv process in the absence of any catalyst. The results demonstrate that cellulose-rich solid pulp produced after pretreatment is a source of fermentable sugars that can be easily hydrolyzed and serve as a carbon source in microbial fermentations for the production of omega-3 fatty acids and D-lactic acid. The C5 sugars are recovered in the aqueous liquid fractions and comprise a fraction rich in xylo-oligosaccharides with prebiotic potential.
View Article and Find Full Text PDFThe valorization of lignocellulosic biomass towards the production of value-added products requires an efficient pretreatment/fractionation step. In this work we present a novel, acid-free, mildly oxidative organosolv delignification process -OxiOrganosolv- which employs oxygen gas to depolymerize and remove lignin. The results demonstrate that the OxiOrganosolv process achieved lignin removal as high as 97% in a single stage, with a variety of solvents; it was also efficient in delignifying both beechwood (hardwood) and pine (softwood), a task in which organosolv pretreatments have failed in the past.
View Article and Find Full Text PDF