Publications by authors named "Georgi Kapitanov"

Bispecific T-cell Engagers (TCEs) are promising anti-cancer treatments that bind to both the CD3 receptors on T cells and an antigen on the surface of tumor cells, creating an immune synapse, leading to killing of malignant tumor cells. These novel therapies have unique development challenges, with specific safety risks of cytokine release syndrome. These on-target adverse events fortunately can be mitigated and deconvoluted from efficacy via innovative dosing strategies, making clinical pharmacology key in the development of these therapies.

View Article and Find Full Text PDF

T-cell engager (TCE) molecules activate the immune system and direct it to kill tumor cells. The key mechanism of action of TCEs is to crosslink CD3 on T cells and tumor associated antigens (TAAs) on tumor cells. The formation of this trimolecular complex (i.

View Article and Find Full Text PDF
Article Synopsis
  • Quantitative modeling plays a key role in drug discovery, helping to determine target selection, compound properties, and dosing decisions.
  • The manuscript introduces a site-of-action modeling framework specifically for monoclonal antibodies aimed at soluble targets.
  • It details the construction and parameterization of the model, provides examples of its application, and discusses both the benefits and limitations of this method.
View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is a disease characterized by degeneration of joint cartilage. It is associated with pain and disability and is the result of either age and activity related joint wear or an injury. Non-invasive treatment options are scarce and prevention and early intervention methods are practically non-existent.

View Article and Find Full Text PDF

Post-traumatic osteoarthritis affects almost 20% of the adult US population. An injurious impact applies a significant amount of physical stress on articular cartilage and can initiate a cascade of biochemical reactions that can lead to the development of osteoarthritis. In our effort to understand the underlying biochemical mechanisms of this debilitating disease, we have constructed a multiscale mathematical model of the process with three components: cellular, chemical, and mechanical.

View Article and Find Full Text PDF

Biomathematical models offer a powerful method of clarifying complex temporal interactions and the relationships among multiple variables in a system. We present a coupled in silico biomathematical model of articular cartilage degeneration in response to impact and/or aberrant loading such as would be associated with injury to an articular joint. The model incorporates fundamental biological and mechanical information obtained from explant and small animal studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual application in human patients.

View Article and Find Full Text PDF

Evidence suggests a strong correlation between the prevalence of HSV-2 (genital herpes) and the perseverance of the HIV epidemic. HSV-2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the co-infection dynamics between the two diseases by incorporating a time-since-infection variable to track the alternating periods of infectiousness of HSV-2.

View Article and Find Full Text PDF

After decades on the decline, it is believed that the emergence of HIV is responsible for an increase in the tuberculosis prevalence. The leading infectious disease in the world, tuberculosis is also the leading cause of death among HIV-positive individuals. Each disease progresses through several stages.

View Article and Find Full Text PDF