The history of the topic of proteins at soft interfaces dates back to the 19 century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information.
View Article and Find Full Text PDFThe effect of the degree of isotopic substitution of the aqueous medium on the adsorption kinetics and the surface dilational rheological behavior at the water/air interface of the globular protein β-lactoglobulin was investigated. Aqueous solutions with fixed concentrations of 1 μM protein and 10 mM hydrogenous buffer with controlled pH 7 were prepared in HO, DO, and an isotopic mixture of 8.1% v/v DO in HO (called air contrast matched water, ACMW).
View Article and Find Full Text PDFProtein adsorption to surfaces is at the heart of numerous technological and bioanalytical applications, but sometimes, it is also associated with medical risks. To deepen our insights into processes involving layers of surface-adsorbed proteins, high-resolution structural information is essential. Here, we use standing-wave X-ray fluorescence (SWXF) in combination with an optimized liquid-cell setup to investigate the underwater conformation of the random-coiled phosphoprotein β-casein adsorbed to hydrophilic and hydrophobized solid surfaces.
View Article and Find Full Text PDFSeveral characteristics of β-lactoglobulin (BLG) layers adsorbed at the air/water interface exhibit a strong pH dependence, but our knowledge on the underlying structure-property relations is still fragmental. Here, we therefore extend our recent studies by neutron reflectometry (NR) and provide a comprehensive overview through direct measurements of the surface excess Γ and the layers' molecular structure. This enables comparison with available literature data to draw general conclusions.
View Article and Find Full Text PDFThe properties of proteins at interfaces are important to many processes as well as in soft matter materials such as aqueous foam. Particularly, the protein interfacial behavior is strongly linked to different factors like the solution pH or the presence of electrolytes. Here, the nature of the electrolyte ions can significantly modify the interfacial properties of proteins.
View Article and Find Full Text PDFThe surface properties of mixed aqueous dispersions of lysozyme and silica nanoparticles were studied using surface-sensitive techniques in order to gain insight into the mechanism of the simultaneous adsorption of protein/nanoparticle complexes and free protein as well as the resulting layer morphologies. The properties were first monitored in situ during adsorption at the air/water interface using dilatational surface rheology, ellipsometry, and Brewster angle microscopy. Two main steps in the evolution of the surface properties were identified.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2019
Vibrational sum-frequency generation (SFG) spectroscopy is demonstrated as a fast method to quantify variations of the electric double-layer potential ϕ at liquid-gas interfaces. For this, mixed solutions of nonionic tetraethyleneglycol-monodecylether (CE) and cationic hexadecyltrimethylammonium bromide (CTAB) surfactants were investigated using SFG spectroscopy and a thin-film pressure balance (TFPB). Derjaguin-Landau-Verwey-Overbeek analysis of disjoining pressure isotherms obtained with the TFPB technique provides complementary information on ϕ, which we apply to validate the results from SFG spectroscopy.
View Article and Find Full Text PDFβ-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed.
View Article and Find Full Text PDFOscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out).
View Article and Find Full Text PDFMacroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interactions at the air-water interface can be changed substantially with the solution pH and result in major changes in interfacial dilational and foam rheology. At a pH near the interfacial isoelectric point BLG molecules carry zero net charge and disordered multilayers with the highest interfacial dilatational elasticity are formed at the air-water interface.
View Article and Find Full Text PDFTwo coordination compounds of Pd(III) with hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp), dinuclear [Pd(III)2(Hp-3H)Cl3(H2O)5]·2PdCl2, 1 and mononuclear [Pd(III)(Hp-2H)Cl(H2O)]·H2O, 2 were obtained and structurally characterized in solid state and solution using spectroscopic, thermal and magnetic methods. In the dinuclear complex, 1 one of the Pd(III) ions is coordinated to the deprotanated COO(-) groups from the side chains of the porphyrin ligand and the second Pd(III) ion - to two adjacent pyrrole N-atoms on the top of the porphyrin ring and a Pd(III)-Hp-Pd(III) system was formed. The Pd(III) ion in the mononuclear complex, 2 is incorporated in the porphyrin core.
View Article and Find Full Text PDFFour new complexes of Ru(III) with a general formula [Ru(L)2Cl2]Cl, where L = 2-amino-4-phenylthiazole (CAS 2010-06-2), 2-amino-4-methylthiazole (CAS 1603-91-4), ethyl 2-amino-4-methyl-5-thiazolecarboxylate (CAS 7210-76-6) and ethyl 2-amino-4-phenyl-5-thiazolecarboxylate (CAS 64399-23-1), were prepared. The syntheses were carried out in polar medium and inert atmosphere at a molar ratio Ru:L = 1:2 or 1:3. The compounds obtained were characterised by IR-, 1H-NMR- 13C-NMR-, UV-VIS-, EPR spectroscopy, magnetochemical and conductivity measurements.
View Article and Find Full Text PDF