Publications by authors named "Georges Limbert"

Bats fly using significantly different wing motions from other fliers, stemming from the complex interplay of their membrane wings' motion and structural properties. Biological studies show that many bats fly at Strouhal numbers, the ratio of flapping to flight speed, 50-150% above the range typically associated with optimal locomotion. We use high-resolution fluid-structure interaction simulations of a bat wing to independently study the role of kinematics and material/structural properties in aerodynamic performance and show that peak propulsive and lift efficiencies for a bat-like wing motion require flapping 66% faster than for a symmetric motion, agreeing with the increased flapping frequency observed in zoological studies.

View Article and Find Full Text PDF

Background And Objective: This paper presents the development of a 3D physics-based numerical model of skin capable of representing the laser-skin photo-thermal interactions occurring in skin photorejuvenation treatment procedures. The aim of this model was to provide a rational and quantitative basis to control and predict temperature distribution within the layered structure of skin. Ultimately, this mathematical and numerical modelling platform will guide the design of an automatic robotic controller to precisely regulate skin temperature at desired depths and for specific durations.

View Article and Find Full Text PDF

Purpose: The lack of long-term patency of synthetic vascular grafts currently available on the market has directed research towards improving the performance of small diameter grafts. Improved radial compliance matching and tissue ingrowth into the graft scaffold are amongst the main goals for an ideal vascular graft.

Methods: Biostable polyurethane scaffolds were manufactured by electrospinning and implanted in subcutaneous and circulatory positions in the rat for 7, 14 and 28 days.

View Article and Find Full Text PDF

The measurement of the mechanical properties of skin (such as stiffness, extensibility and strength) is a key step in characterisation of both dermal ageing and disease mechanisms and in the assessment of tissue-engineered skin replacements. However, the biomechanical terminology and plethora of mathematical analysis approaches can be daunting to those outside the field. As a consequence, mechanical studies are often inaccessible to a significant proportion of the intended audience.

View Article and Find Full Text PDF

The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.

View Article and Find Full Text PDF

Bone is a heterogeneous material and its mechanical properties vary within the body. Variations in the mechanical response of different bone samples taken from the body cannot be fully explained by only looking at local compositional information at the tissue level. Due to different states of the stress within bones, one might expect that mechanical properties change over the length of a bone; this has not been a matter of systematic research in previous studies.

View Article and Find Full Text PDF

Due to its multifactorial nature, skin friction remains a multiphysics and multiscale phenomenon poorly understood despite its relevance for many biomedical and engineering applications (from superficial pressure ulcers, through shaving and cosmetics, to automotive safety and sports equipment). For example, it is unclear whether, and in which measure, the skin microscopic surface topography, internal microstructure and associated nonlinear mechanics can condition and modulate skin friction. This study addressed this question through the development of a parametric finite element contact homogenisation procedure which was used to study and quantify the effect of the skin microstructure on the skin frictional response.

View Article and Find Full Text PDF

Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days.

View Article and Find Full Text PDF

The study of skin biophysics has largely been driven by consumer goods, biomedical and cosmetic industries which aim to design products that efficiently interact with the skin and/or modify its biophysical properties for health or cosmetic benefits. The skin is a hierarchical biological structure featuring several layers with their own distinct geometry and mechanical properties. Up to now, no computational models of the skin have simultaneously accounted for these geometrical and material characteristics to study their complex biomechanical interactions under particular macroscopic deformation modes.

View Article and Find Full Text PDF

Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert.

View Article and Find Full Text PDF

Bone is multi-scale hierarchical composite material making the prediction of fragility, as well as pinning it to a certain cause, complicated. For proper mechanical simulation and reflection of bone properties in models, microscopic structural features of bone tissue need to be included. This study sets out to gain a mechanistic insight into the role of various microstructural features of bone tissue in particular cement lines and interlamellar areas.

View Article and Find Full Text PDF

Characterising and modelling the mechanical behaviour of biological soft tissues is an essential step in the development of predictive computational models to assist research for a wide range of applications in medicine, biology, tissue engineering, pharmaceutics, consumer goods, cosmetics, transport or military. It is therefore critical to develop constitutive models that can capture particular rheological mechanisms operating at specific length scales so that these models are adapted for their intended applications. Here, a novel mesoscopically-based decoupled invariant-based continuum constitutive framework for transversely isotropic and orthotropic biological soft tissues is developed.

View Article and Find Full Text PDF

We present here a multi-objective and multi-disciplinary coronary stent design optimization paradigm. Coronary stents are tubular, often mesh-like, structures which are deployed in diseased (stenosed) artery segments to provide a scaffolding feature that compresses atheromatus plaque, hence restoring luminal area and maintaining vessel patency. A three variable geometry parameterisation of a CYPHER (Cordis Corporation, Johnson & Johnson co.

View Article and Find Full Text PDF

Coronary stents are tubular type scaffolds that are deployed, using an inflatable balloon on a catheter, most commonly to recover the lumen size of narrowed (diseased) arterial segments. A common differentiating factor between the numerous stents used in clinical practice today is their geometric design. An ideal stent should have high radial strength to provide good arterial support post-expansion, have high flexibility for easy manoeuvrability during deployment, cause minimal injury to the artery when being expanded and, for drug eluting stents, should provide adequate drug in the arterial tissue.

View Article and Find Full Text PDF

The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation).

View Article and Find Full Text PDF

This study is devoted to the development of a non-linear anisotropic model for the human periodontal ligament (PDL). A thorough knowledge of the behaviour of the PDL is vital in understanding the mechanics of orthodontic tooth mobility, soft tissue response and proposed treatment plans. There is considerable evidence that the deformation of the PDL is the key factor determining the orthodontic tooth movement.

View Article and Find Full Text PDF

Further to our previous work on the development of a general constitutive framework for transversely isotropic viscohyperelasticity (Limbert, G, Middleton, J. A transversely isotropic viscohyperelastic material. Application to the modelling of biological soft connective tissues.

View Article and Find Full Text PDF

In this study, a constitutive law based on a nearly incompressible transversely isotropic hyperelastic potential is proposed to describe the mechanical behaviour of the anterior cruciate ligament (ACL). The constitutive formulation is valid for arbitrary kinematics (finite elasticity) and is thermodynamically admissible. Based on anatomic measurements performed on a human cadaveric knee specimen, a three-dimensional continuum finite element model of the ACL was developed.

View Article and Find Full Text PDF

This study describes the development of a constitutive law for the modelling of the periodontal ligament (PDL) and its practical implementation into a commercial finite element code. The constitutive equations encompass the essential mechanical features of this biological soft tissue: non-linear behaviour, large deformations, anisotropy, distinct behaviour in tension and compression and the fibrous characteristics. The approach is based on the theory of continuum fibre-reinforced composites at finite strain where a compressible transversely isotropic hyperelastic strain energy function is defined.

View Article and Find Full Text PDF