Background: Animal experiments have suggested that the intrauterine environment causes secondary injury to the congenitally dysplastic spinal cord. This in turn suggests that early closure of the myelomeningocele sac might prevent secondary injury and therefore improve neurologic outcome. This study was designed to examine the technical feasibility of performing intrauterine myelomeningocele repair using a robot-assisted endoscopic system in an animal model.
View Article and Find Full Text PDF