Publications by authors named "Georges Emile Grau"

Cerebral malaria (CM), the most lethal clinical syndrome of infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published.

View Article and Find Full Text PDF

Secretory IgA is a key mucosal component ensuring host-microbiota mutualism. Here we use nutritional geometry modelling in mice fed 10 different macronutrient-defined, isocaloric diets, and identify dietary protein as the major driver of secretory IgA production. Protein-driven secretory IgA induction is not mediated by T-cell-dependent pathways or changes in gut microbiota composition.

View Article and Find Full Text PDF

The resolution of malaria infection is dependent on a balance between proinflammatory and regulatory immune responses. While early effector T cell responses are required for limiting parasitemia, these responses need to be switched off by regulatory mechanisms in a timely manner to avoid immune-mediated tissue damage. Interleukin-10 receptor (IL-10R) signaling is considered to be a vital component of regulatory responses, although its role in host resistance to severe immune pathology during acute malaria infections is not fully understood.

View Article and Find Full Text PDF

The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear.

View Article and Find Full Text PDF

Plasmodium falciparum malaria is a major cause of morbidity and mortality in African children, and factors that determine the development of uncomplicated (UM) versus cerebral malaria (CM) are not fully understood. We studied the ex vivo responsiveness of microvascular endothelial cells to pro-inflammatory stimulation and compared the findings between CM and UM patients. In patients with fatal disease we compared the properties of vascular endothelial cells cultured from brain tissue to those cultured from subcutaneous tissue, and found them to be very similar.

View Article and Find Full Text PDF

A dysregulated host immune response, as opposed to the intrinsic virulence of a microbial pathogen induces a large part of the pathology seen in infectious diseases. However, current therapies are designed to target the pathogen rather than the underlying pathogenic mechanisms responsible for the manifestation of the pathology. Recent studies have highlighted the role of endothelial cell alteration in the pathology induced in sepsis and cerebral malaria.

View Article and Find Full Text PDF

Platelets may play a role in the pathogenesis of human cerebral malaria (CM), and they have been shown to induce clumping of Plasmodium falciparum-parasitized red blood cells (PRBCs) in vitro. Both thrombocytopenia and platelet-induced PRBC clumping are associated with severe malaria and, especially, with CM. In the present study, we investigated the occurrence of the clumping phenomenon in patients with CM by isolating and coincubating their plasma and PRBCs ex vivo.

View Article and Find Full Text PDF

Brain lesions of cerebral malaria (CM) are characterised by a sequestration of Plasmodium falciparum-parasitised red blood cells (PRBC), leucocytes and platelets within brain microvessels, by an excessive release of pro-inflammatory cytokines as well as by disruption of the blood-brain barrier (BBB). We evaluated the possibility that PRBC and platelets interact and induce functional alterations in brain endothelium. Using an in vitro model of endothelial lesion, we showed that platelets can act as bridges between PRBC and endothelial cells (EC) allowing the binding of PRBC to endothelium devoid of cytoadherence receptors.

View Article and Find Full Text PDF

The ATP-binding cassette transporter A1 (ABCA1) modulates the transbilayer distribution of phosphatidylserine at the outer leaflet of the plasma membrane. This external exposure of phosphatidylserine is a hallmark of microparticle production and is impaired in ABCA1(-/-) mice. In this study, we report about the complete resistance to cerebral malaria of these mice.

View Article and Find Full Text PDF

Severe malaria is characterized by the sequestration of Plasmodium falciparum-infected erythrocytes (IEs). Because platelets can affect tumor necrosis factor (TNF)-activated endothelial cells (ECs), we investigated their role in the sequestration of IEs, using IEs that were selected because they can adhere to endothelial CD36 (IE(CD36)), a P. falciparum receptor that is expressed on platelets.

View Article and Find Full Text PDF