Publications by authors named "Georges Boudebs"

Chalcogenide glass has achieved great success in manufacturing axial-type infrared gradient refractive index (IR-GRIN) lenses. However, studies on radial-type IR-GRIN lenses, which are more ideal for optical design, remain rare. The present study introduces what we believe to be a new method for preparing radial IR-GRIN lens by creating high refractive index () InS nanocrystals within a 65GeS-25InS-10CsCl (GIC, in molar percentage) glass matrix.

View Article and Find Full Text PDF

The first hyperpolarizability of graphene quantum dots (GQDs) suspended in water was determined using the hyper-Rayleigh scattering (HRS) technique. To the best of our knowledge, this is the first application of the HRS technique to characterize GQDs. Two commercial GQDs (Acqua-Cyan and Acqua-Green) with different compositions were studied.

View Article and Find Full Text PDF

The single-beam -scan thermal lens technique is conducted to evaluate the fluorescence quantum yield of various solutions in the case of high-moderate absorption, considering both scenarios: solutions with substantial fluorescence and solutions with high thermal efficiency but low fluorescence. An analytical calculation is performed to determine the uncertainties associated with the random errors introduced by optical detectors. The results reveal that solutions with low fluorescence lead to a significant error, whereas higher fluorescence can help in decreasing the uncertainty.

View Article and Find Full Text PDF

The thermal lens effect is analyzed as a time-resolved Z-scan measurement using cw-single Gaussian beam configuration. The main characteristics of the measurement method are determined. We focus on the evaluation of the measurement error from statistical calculations to also check the linearity of the response and the way to extract the thermo-optical characteristics of absorbing liquids.

View Article and Find Full Text PDF

A general study of the diffracted far field due to thermal lens heating using Gaussian beams is presented. The numerical simulation considers the whole system, including both the optical and the thermal parameters. It is shown that the existing simplified relations found in the literature and used up to now only give the order of magnitude of the thermo-optical coefficients.

View Article and Find Full Text PDF

Zinc oxide nanoparticles were prepared from Zn(CO)(OH) precursor, capped with poly(vinylpyrrolidone) (PVP), and annealed at 600 °C. The obtained powders were characterized by a powder X-ray diffraction (PXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), Raman spectroscopy, infrared spectroscopy (IR), thermal analysis (TGA/DTA), and third-order nonlinear (NL) optical measurement. Morphological evaluation by TEM and SEM measurements indicated that the precursor micro-particles are ball-shaped structures composed of plates with a thickness of approximately 10 nm.

View Article and Find Full Text PDF

Various techniques to characterize the nonlinear (NL) optical response of centro-symmetric materials are presented and evaluated with emphasis on the relationship between the macroscopic measurable quantities and the microscopic properties of photonic materials. NL refraction and NL absorption of the materials are the phenomena of major interest. The dependence of the NL refraction and NL absorption coefficients on the nature of the materials was studied as well as on the laser excitation characteristics of wavelength, intensity, spatial profile, pulse duration and pulses repetition rate.

View Article and Find Full Text PDF

The nonlinear response of liquid water was investigated at 1064 and 532 nm using a Nd:YAG laser delivering pulses of 17 ps and its second harmonic. The experiments were performed using the D4σ method combined with the Z-scan technique. Nonlinear refractive indices of third- and fifth-order were determined, as well as the three-photon absorption coefficient, for both wavelengths.

View Article and Find Full Text PDF

We show that direct measurement of the beam radius in Z-scan experiments using a CCD camera at the output of a 4f-imaging system allows higher sensitivity and better accuracy than Baryscan. One of the advantages is to be insensitive to pointing instability of pulsed lasers because no hard (physical) aperture is employed as in the usual Z-scan. In addition, the numerical calculations involved here and the measurement of the beam radius are simplified since we do not measure the transmittance through an aperture and it is not subject to mathematical artifacts related to a normalization process, especially when the diffracted light intensity is very low.

View Article and Find Full Text PDF

The excitation of near-infrared (2+1)D solitons in liquid carbon disulfide is demonstrated due to the simultaneous contribution of the third- and fifth-order susceptibilities. Solitons propagating free from diffraction for more than 10 Rayleigh lengths although damped, were observed to support the proposed soliton behavior. Numerical calculations using a nonlinear Schrödinger-type equation were also performed.

View Article and Find Full Text PDF

Glasses in the ternary system (70 - x)NaPO(3)-30WO(3)-xBi(2)O(3), with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi(2)O(3) on the thermal, structural, and optical properties was investigated.

View Article and Find Full Text PDF

We report experimental characterization of a very small rectangular phase shift (<0.3 rad) obtained from the far-field diffraction patterns using a closed aperture Z-scan technique. The numerical simulations as well as the experimental results reveal a peak-valley configuration in the far-field normalized transmittance, allowing us to determine the sign of the dephasing.

View Article and Find Full Text PDF

Kerr spatial solitons are observed in slab chalcogenide waveguides at near-IR wavelengths. Waveguides are realized either by electron-beam evaporation or rf sputtering of a Ge-Sb-S compound deposited on oxidized silicon wafer. The Kerr coefficient of the thin film is evaluated to be 5 x 10(-18) m(2)/W from the experimentally required soliton power at 1.

View Article and Find Full Text PDF