Neuron-glia interactions play a critical role in the maturation of neural circuits; however, little is known about the pathways that mediate their communication in the developing CNS. We investigated neuron-glia signaling in the developing retina, where we demonstrate that retinal waves reliably induce calcium transients in Müller glial cells (MCs). During cholinergic waves, MC calcium transients were blocked by muscarinic acetylcholine receptor antagonists, whereas during glutamatergic waves, MC calcium transients were inhibited by ionotropic glutamate receptor antagonists, indicating that the responsiveness of MCs changes to match the neurotransmitter used to support retinal waves.
View Article and Find Full Text PDFCellular debris created by developmental processes or injury must be cleared by phagocytic cells to maintain and repair tissues. Cutaneous injuries damage not only epidermal cells but also the axonal endings of somatosensory (touch-sensing) neurons, which must be repaired to restore the sensory function of the skin. Phagocytosis of neuronal debris is usually performed by macrophages or other blood-derived professional phagocytes, but we have found that epidermal cells phagocytose somatosensory axon debris in zebrafish.
View Article and Find Full Text PDFBefore the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete.
View Article and Find Full Text PDFDuring the first 2 wk of mouse postnatal development, transient retinal circuits give rise to the spontaneous initiation and lateral propagation of depolarizations across the ganglion cell layer (GCL). Glutamatergic retinal waves occur during the second postnatal week, when GCL depolarizations are mediated by ionotropic glutamate receptors. Bipolar cells are the primary source of glutamate in the inner retina, indicating that the propagation of waves depends on their activation.
View Article and Find Full Text PDF