A new portal imager consisting of four vertically stacked conventional electronic portal imaging device (EPID) layers has been constructed in pursuit of improved detective quantum efficiency (DQE). We hypothesize that super-resolution (SR) imaging can also be achieved in such a system by shifting each layer laterally by half a pixel relative to the layer above. Super-resolution imaging will improve resolution and contrast-to-noise ratio (CNR) in megavoltage (MV) planar and cone beam computed tomography (MV-CBCT) applications.
View Article and Find Full Text PDFPurpose: We hypothesized that combining multiple amorphous silicon flat panel layers increases photon detection efficiency in an electronic portal imaging device (EPID), improving image quality and tracking accuracy of low-contrast targets during radiotherapy.
Methods: The prototype imager evaluated in this study contained four individually programmable layers each with a copper converter layer, Gd O S scintillator, and active-matrix flat panel imager (AMFPI). The imager was placed on a Varian TrueBeam linac and a Las Vegas phantom programmed with sinusoidal motion (peak-to-peak amplitude = 20 mm, period = 3.
Beams-eye-view imaging applications such as real-time soft-tissue motion estimation are hindered by the inherently low image contrast of electronic portal imaging devices (EPID) currently available for clinical use. We introduce and characterize a novel EPID design that provides substantially increased detective quantum efficiency (DQE), contrast-to-noise ratio (CNR) and sensitivity without degradation in spatial resolution. The prototype design features a stack of four conventional EPID layers combined with low noise integrated readout electronics.
View Article and Find Full Text PDFPurpose: Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam's eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics.
View Article and Find Full Text PDF