Triple negative breast cancer (TNBC) is characterized by the absence of hormones and growth factor receptors. It is typically responsive to anthracycline/taxol-based conventional chemotherapy. However, major therapeutic limitations include systemic toxicity and acquired resistance to chemotherapeutics.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2021
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor-α progesterone receptor and human epidermal growth factor receptor-2. Treatment for this breast cancer subtype is restricted to multidrug chemotherapy and survival pathway-based molecularly targeted therapy. The long-term treatment options are associated with systemic toxicity, spontaneous and/or acquired tumor resistance and the emergence a of drug-resistant stem cell population.
View Article and Find Full Text PDFAromatase inhibitors (AIs) represent a treatment option for post-menopausal estrogen receptor-positive (ER) breast cancer as monotherapy, or in combination with cyclin-dependent kinase 4/6 or mTOR inhibitors. Long-term treatment with these agents leads to dose-limiting toxicity and drug resistance. Natural substances provide testable alternatives to current therapy.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) lacks the expressions of estrogen receptor-α, progesterone receptor and human epidermal growth factor receptor-2. The treatment options for TNBC include anthracyclin/taxol based conventional chemotherapy and small molecular inhibitor based targeted therapy. However, the therapeutic efficacy is limited by systemic toxicity and acquired tumor resistance; identification of less toxic testable alternatives is urgently required.
View Article and Find Full Text PDFThe Luminal A subtype of breast cancer expresses the estrogen receptor (ER)-α and progesterone receptor (PR), but not the human epidermal growth factor receptor (HER)-2 oncogene. This subtype of breast cancer responds to endocrine therapy involving the use of selective estrogen receptor modulators and/or inhibitors of estrogen biosynthesis. However, these therapeutic agents are frequently associated with long-term systemic toxicity and acquired tumor resistance, emphasizing the need to identify non-toxic alternative treatments for chemo-endocrine therapy responsive breast cancer.
View Article and Find Full Text PDFChemo-endocrine therapy for estrogen receptor positive (ER(+)) breast cancer exhibits acquired tumor resistance. Herbal medicines provide integrative support for breast cancer patients. Present study compared the efficacy of aqueous extracts from Lycium barbarum bark (LBB) and Lycium barbarum fruit (LBF) on ER(+) MCF-7 cells.
View Article and Find Full Text PDFSelective estrogen receptor modulators represent accepted therapy for estrogen receptor positive (ER+) breast cancer, exhibit adverse side effects, and reduce patient compliance. The use of phytoestrogen containing herbal medicines is limited because of efficacy and safety concerns. The ER+ MCF-7 model examined growth inhibitory effects of the medicinal herb Lycium barbarum (LB) and identified mechanistic leads for its efficacy.
View Article and Find Full Text PDFBackground: We assessed the prognostic significance of the presence of micrometastasis in the bone marrow at the time of diagnosis of breast cancer by means of a pooled analysis.
Methods: We combined individual patient data from nine studies involving 4703 patients with stage I, II, or III breast cancer. We evaluated patient outcomes over a 10-year follow-up period (median, 5.