Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying abnormal neuronal connectivity remain unclear.
View Article and Find Full Text PDFNeuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying aberrant neuronal connectivity remains unclear.
View Article and Find Full Text PDFMicroglia serve as resident immune cells in the brain, responding to insults and pathological developments. They have also been implicated in shaping synaptic development and regulation. The present study examined microglial cell density in a number of brain regions across select postnatal (P) ages along with the effects of valproic acid (VPA) on microglia density.
View Article and Find Full Text PDFThe repeated administration of high doses of amphetamine has been shown to cause long-lasting depletions of striatal dopamine which, when substantial enough, have been shown to result in cognitive and motor impairment. These amphetamine-induced lesions are slightly larger in males than that in females and can be partially ameliorated by pretreatment with antioxidants. The objective of the present study was to replicate these two latter observations using an amphetamine dosing regimen that yields only minor depletions of dopamine.
View Article and Find Full Text PDFGlandular trichomes on the surface of Solanaceae species produce acyl sugars that are species-, and cultivar-specific. Acyl sugars are known to possess insecticidal, antibiotic, and hormone-like properties, and as such have great potential as a class of naturally occurring pesticides and antibiotics. The objective of this work was to analyze the acyl composition of acyl sugars in the leaf trichome exudate from selected Nicotiana species and to follow the inheritance of acyl content in their hybrids.
View Article and Find Full Text PDFThe gamma-aminobutyric acid (GABA)-shift hypothesis proposes that GABA agonist action is excitatory early in development and transitions to an inhibitory role later in life. In experiment 1, the nonspecific GABA agonist, valproic acid (VPA), was administered to pregnant C57BL/6 mice on embryonic day 13. Fetal and maternal brains were harvested 2 h post-VPA exposure and assayed for nuclear factor erythroid 2-related factor 2 (NRF2) and H3 expression through western blot analysis.
View Article and Find Full Text PDFValproic acid (VPA) administered to mice during the early postnatal period causes social, cognitive, and motor deficits similar to those observed in humans with autism spectrum disorder (ASD). However, previous studies on the effects of early exposure to VPA have largely focused on behavioral deficits occurring before or during the juvenile period of life. Given that ASD is a life-long condition, the present study ought to extend our understanding of the behavioral profile following early postnatal VPA into adulthood.
View Article and Find Full Text PDFCell replacement therapy is a promising treatment strategy for Parkinson's disease (PD); however, the poor survival rate of transplanted neurons is a critical barrier to functional recovery. In this study, we used self-assembling peptide nanofiber scaffolds (SAPNS) based on the peptide RADA16-I to support the maturation and post-transplantation survival of encapsulated human dopaminergic (DA) neurons derived from induced pluripotent stem cells. Neurons encapsulated within the SAPNS expressed mature neuronal and midbrain DA markers and demonstrated functional activity similar to neurons cultured in two dimensions.
View Article and Find Full Text PDFOxidative stress has been implicated in both the functional and cognitive decline associated with neuropsychiatric diseases and aging. A master regulator of the body's defense mechanism against oxidative stress is nuclear factor erythroid 2-related factor (NRF2). Here we investigated the effects of NRF2 deletion on motor and cognitive performance in "Aged" mice (17-25 months old) as compared to "Mature" mice (3-15 months old).
View Article and Find Full Text PDFCleaning behavioral equipment between rodent subjects is important to prevent disease transmission and reduce odor cues from previous subjects. However, the reporting regarding the cleansing procedures used during such experiments is sporadic and often incomplete. In addition, some investigators are reluctant to clean devices between subjects because they are concerned that animals will react negatively to the smell of the cleansing agents.
View Article and Find Full Text PDFSulfur mustard is one of the most toxic chemical warfare agents worldwide. We report the use of 4,4-difluoro-4-bora-3a,4a-diaza- s-indacene (BODIPY) photosensitizers as a fast and effective sulfur mustard decontaminant and their incorporation into various polymer coatings and fabrics, including army combat uniform. These BODIPY-embedded materials are capable of generating singlet oxygen under visible light irradiation and effectively detoxifying sulfur mustard by converting it into nontoxic sulfoxides as the major products.
View Article and Find Full Text PDFManufactured nanoparticles (NPs) are increasingly being used for commercial purposes and certain NP types have been shown to have broad spectrum antibacterial activity. In contrast, their activities against fungi and fungi-like oomycetes are less studied. Here, we examined the potential of two types of commercially available Zn NPs (Zn NPs and ZnO NPs) to inhibit spore germination and infectivity on tobacco leaves resulting from exposure to the fungi-like oomycete pathogen ().
View Article and Find Full Text PDFIncreased alcohol consumption and heightened aggression have been linked to social isolation. Furthermore, animals treated with alcohol following social separation showed higher aggression together with lower serotonin transmission. Although reduced serotonin transmission in the brain may be related to alcohol-induced heightened aggression and fluoxetine has been used to reduce alcohol intake and aggression, it remains unclear whether there are specific brain regions where changes in serotonin transmission are critical for animal aggression following the alcohol treatment.
View Article and Find Full Text PDFA unique feature of glandular trichomes of plants in the botanical family Solanaceae is that they produce sugar esters (SE), chemicals that have been shown to possess insecticidal, antifungal, and antibacterial properties. Sugar esters of tobacco (Nicotiana tabacum) provide pest resistance, and are important flavor precursors in oriental tobacco cultivars. Acyl moieties of SEs in Nicotiana spp.
View Article and Find Full Text PDFA wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.
View Article and Find Full Text PDFThe nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed.
View Article and Find Full Text PDFEvaluation of UiO-66 and UiO-67 metal-organic framework derivatives as catalysts for the degradation of soman, a chemical warfare agent, showed the importance of both the linker size and functionality. The best catalysts yielded half-lives of less than 1 min. Further testing with a nerve agent simulant established that different rate-assessment techniques yield similar values for degradation half-lives.
View Article and Find Full Text PDFHere we report the removal of chlorine gas from air via a reaction with an amine functionalized metal-organic framework (MOF). It is found that UiO-66-NH2 has the ability to remove 1.24 g of Cl2 per g of MOF via an electrophilic aromatic substitution reaction producing HCl, which is subsequently neutralized by the MOF.
View Article and Find Full Text PDFChemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills.
View Article and Find Full Text PDFThe Eph family of receptor tyrosine kinases play key roles in both the patterning of the developing nervous system and neural plasticity in the mature brain. To determine functions of ephrin-A5, a GPI-linked ligand to the Eph receptors, in animal behavior regulations, we examined effects of its inactivation on male mouse aggression. When tested in the resident-intruder paradigm for offensive aggression, ephrin-A5-mutant animals (ephrin-A5(-/-)) exhibited severe reduction in conspecific aggression compared to wild-type controls.
View Article and Find Full Text PDFResidue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds.
View Article and Find Full Text PDFEarly exposure to valproic acid results in autism-like neural and behavioral deficits in humans and other animals through oxidative stress-induced neural damage. In the present study, valproic acid was administered to genetically altered mice lacking the Nrf2 (nuclear factor-erythroid 2 related factor 2) gene on postnatal day 14 (P14). Nrf2 is a transcription factor that induces genes that protect against oxidative stress.
View Article and Find Full Text PDFGastrointestinal (GI) dysfunctions are frequently reported by parents of children with autism spectrum disorders (ASD) and have been recently recognized as a comorbid condition. However, the clinical significance of these GI dysfunctions remains to be delineated. This study describes the clinical characteristics, associated comorbid disorders, and endoscopic and colonoscopic evaluation of GI dysfunction in a cohort of 164 children with ASD evaluated at a pediatric neurology practice.
View Article and Find Full Text PDFThe proper functions of cortical circuits are dependent upon both appropriate neuronal subtype specification and their maturation to receive appropriate signaling. These events establish a balanced circuit that is important for learning, memory, emotion, and complex motor behaviors. Recent research points to mRNA metabolism as a key regulator of this development and maturation process.
View Article and Find Full Text PDF