Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer.
View Article and Find Full Text PDFBackground: Preliminary data indicate that tyrosine kinase inhibitors (TKIs) function through rearranged during transfection (RET) in breast cancer. However, TKIs are not specific and can block several receptor tyrosine kinases (RTKs). This study used cell lines and primary breast cancer specimens to determine factors associated with TKI response.
View Article and Find Full Text PDFThe TFAP2C/AP-2γ transcription factor regulates luminal breast cancer genes, and loss of TFAP2C induces epithelial-mesenchymal transition. By contrast, the highly homologous family member, TFAP2A, lacks transcriptional activity at luminal gene promoters. A detailed structure-function analysis identified that sumoylation of TFAP2A blocks its ability to induce the expression of luminal genes.
View Article and Find Full Text PDFPurpose: Recent findings suggest that combination treatment with antiestrogen and anti-RET may offer a novel treatment strategy in a subset of patients with breast cancer. We investigated the role of RET in potentiating the effects of antiestrogen response and examined whether RET expression predicted the ability for tyrosine kinase inhibitor (TKI) to affect extracellular signal-regulated kinase 1/2 (ERK1/2) activation in primary breast cancer.
Experimental Design: Growth response, ERK1/2 activation, Ki-67, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were assessed in breast cancer cell lines in vitro and in xenografts with vandetanib and/or tamoxifen.
Objective: We investigated directed therapy based on TFAP2C-regulated pathways to inform new therapeutic approaches for treatment of luminal breast cancer.
Background: TFAP2C regulates the expression of genes characterizing the luminal phenotype including ESR1 and RET, but pathway cross talk and potential for distinct elements have not been characterized.
Methods: Activation of extracellular signal-regulated kinases (ERK) and AKT was assessed using phosphorylation-specific Western blot.
Background: The RET proto-oncogene is expressed as part of the estrogen receptor (ER) cluster in breast cancer. We sought to determine if TFAP2C regulates Ret expression directly or indirectly through ER.
Methods: Chromatin immunoprecipitation sequencing (ChIP-Seq) and gel-shift assay were used to identify TFAP2C binding sites in the RET promoter in four breast cancer cell lines.
The TFAP2C transcription factor is involved in mammary development, differentiation, and oncogenesis. Previous studies established a role for TFAP2C in the regulation of ESR1 (ERalpha) and ERBB2 (Her2) in breast carcinomas. However, the role of TFAP2C in different breast cancer phenotypes has not been examined in detail.
View Article and Find Full Text PDFPurpose: Transcriptional regulation of estrogen receptor-alpha (ERalpha) involves both epigenetic mechanisms and trans-active factors, such as TFAP2C, which induces ERalpha transcription through an AP-2 regulatory region in the ERalpha promoter. Attempts to induce endogenous ERalpha expression in ERalpha-negative breast carcinomas by forced overexpression of TFAP2C have not been successful. We hypothesize that epigenetic chromatin structure alters the activity of TFAP2C at the ERalpha promoter.
View Article and Find Full Text PDFBreast cancers expressing estrogen receptor-alpha (ERalpha) are associated with a favorable biology and are more likely to respond to hormonal therapy. In addition to ERalpha, other pathways of estrogen response have been identified including ERbeta and GPR30, a membrane receptor for estrogen, and the key mechanisms regulating expression of ERs and hormone response remain controversial. Herein, we show that TFAP2C is the key regulator of hormone responsiveness in breast carcinoma cells through the control of multiple pathways of estrogen signaling.
View Article and Find Full Text PDFBackground: The AP2 transcription factor family is a set of developmentally regulated, retinoic acid (RA) inducible genes, which regulate expression of estrogen receptor-alpha (ERalpha) in breast carcinoma. We hypothesized that AP2 factors regulate a set of genes characteristic of the hormone responsive breast cancer phenotype. To better understand the role of AP2 factors in hormone responsive breast cancer, we sought to identify AP2-target genes in breast epithelial cells.
View Article and Find Full Text PDF