Publications by authors named "George W Nelson"

class I variation has the strongest effect genome-wide on outcome after HIV infection, and as such, an understanding of the impact of polymorphism on response to HIV vaccination may inform vaccine design. We sought associations with HIV-directed immunogenicity in the phase 1/2a APPROACH vaccine trial, which tested vaccine regimens containing mosaic inserts in Ad26 and MVA vectors, with or without a trimeric gp140 protein. While there were no allelic associations with the overall cellular immune response to the vaccine assessed by ELISpot (Gag, Pol, and Env combined), significant associations with differential response to Gag compared to Env antigens were observed.

View Article and Find Full Text PDF

The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14 monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10).

View Article and Find Full Text PDF

There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS.

View Article and Find Full Text PDF

Introduction: Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time.

Methods: We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples.

View Article and Find Full Text PDF
Article Synopsis
  • Current cancer treatments focus on the genetic traits of primary tumors but struggle with treatment effectiveness for metastatic diseases.
  • Research shows that DNMT3B is activated in metastatic sites, leading to changes in cancer cell behavior by influencing vital signaling pathways like STAT3 and NFκB.
  • Targeting inflammatory mediators such as IL6 and COX-2 may reduce DNMT3B levels and enhance the effectiveness of existing therapies, suggesting new strategies for treating metastatic cancer.
View Article and Find Full Text PDF

Introduction: In South Africa (SA), steroid-resistant nephrotic syndrome (SRNS) is more frequent in black than in Indian children.

Methods: Seeking a genetic basis for this disparity, we enrolled 33 Indian and 31 black children with steroid-sensitive nephrotic syndrome (SSNS) and SRNS from KwaZulu-Natal, SA; SRNS children underwent kidney biopsy. We sequenced and genotyped in 15 SSNS and 64 SRNS unrelated patients and 104 controls and replicated results in 18 black patients with steroid-resistant focal segmental glomerulosclerosis (SR-FSGS).

View Article and Find Full Text PDF

Black Americans are at increased risk for preeclampsia. Genetic variants in apolipoprotein L1 (APOL1) account for much of the increased risk for kidney disease in blacks. APOL1 is expressed in human placenta and transgenic mice expressing APOL1 develop preeclampsia.

View Article and Find Full Text PDF

A third of African Americans with sporadic focal segmental glomerulosclerosis (FSGS) or HIV-associated nephropathy (HIVAN) do not carry APOL1 renal risk genotypes. This raises the possibility that other APOL1 variants may contribute to kidney disease. To address this question, we sequenced all APOL1 exons in 1437 Americans of African and European descent, including 464 patients with biopsy-proven FSGS/HIVAN.

View Article and Find Full Text PDF

Background: Mapping by admixture linkage disequilibrium (MALD) is a whole genome gene mapping method that uses LD from extended blocks of ancestry inherited from parental populations among admixed individuals to map associations for diseases, that vary in prevalence among human populations. The extended LD queried for marker association with ancestry results in a greatly reduced number of comparisons compared to standard genome wide association studies. As ancestral population LD tends to confound the analysis of admixture LD, the earliest algorithms for MALD required marker sets sufficiently sparse to lack significant ancestral LD between markers.

View Article and Find Full Text PDF

The discovery that two common APOL1 alleles were strongly associated with nondiabetic kidney diseases in African descent populations led to hope for improved diagnosis and treatment. Unfortunately, we still do not have a clear understanding of the biological function played by APOL1 in podocytes or other kidney cells, nor how the renal risk alleles initiate the development of nephropathies. Important clues for APOL1 function may be gleaned from the natural defense mechanism of APOL1 against trypanosome infections and from similar proteins (e.

View Article and Find Full Text PDF

APOL1 variants are associated with HIV-associated nephropathy and FSGS in African Americans. The prevalence of these variants in African populations with CKD in HIV-1 infection has not been investigated. We determined the role of APOL1 variants in 120 patients with HIV-associated nephropathy and CKD and 108 controls from a South-African black population.

View Article and Find Full Text PDF

APOL1 kidney disease is a unique case in the field of the genetics of common disease: 2 variants (termed G1 and G2) with high population frequency have been repeatedly associated with nondiabetic CKDs, with very strong effect size (odds ratios 3-29) in populations of sub-Saharan African descent. This review provides an update on the spectrum of APOL1 kidney disease and on the worldwide distribution of these kidney risk variants. We also summarize the proper way to run a recessive analysis on joint and independent effects of APOL1 G1 and G2 kidney risk variants.

View Article and Find Full Text PDF

Despite intensive antihypertensive therapy there was a high incidence of renal end points in participants of the African American Study of Kidney Disease and Hypertension (AASK) cohort. To better understand this, coding variants in the apolipoprotein L1 (APOL1) and the nonmuscle myosin heavy chain 9 (MYH9) genes were evaluated for an association with hypertension-attributed nephropathy and clinical outcomes in a case-control study. Clinical data and DNA were available for 675 AASK participant cases and 618 African American non-nephropathy control individuals.

View Article and Find Full Text PDF

Recently, an association was found between nondiabetic kidney disease in African Americans and two independent sequence variants in the APOL1 gene, encoding apolipoprotein L1. In this study we determined the frequency of APOL1 risk variants in patients with biopsy-proven HIV-associated nephropathy (HIVAN) and distinctive pathological characteristics potentially driven by those risk variants. Among 76 patients with HIVAN, 60 were successfully genotyped for APOL1 G1 and G2 polymorphisms.

View Article and Find Full Text PDF

Chromosome 3p21-22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs) in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21) and CCR8 and CX3CR1 (at 3p22), the majority of which were non-synonymous.

View Article and Find Full Text PDF

Trypanolytic variants in APOL1, which encodes apolipoprotein L1, associate with kidney disease in African Americans, but whether APOL1-associated glomerular disease has a distinct clinical phenotype is unknown. Here we determined APOL1 genotypes for 271 African American cases, 168 European American cases, and 939 control subjects. In a recessive model, APOL1 variants conferred seventeenfold higher odds (95% CI 11 to 26) for focal segmental glomerulosclerosis (FSGS) and twenty-nine-fold higher odds (95% CI 13 to 68) for HIV-associated nephropathy (HIVAN).

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated how genetic variations in individuals affect the progression of HIV to AIDS by analyzing data from five cohorts of HIV patients, focusing on single-nucleotide polymorphisms (SNPs).
  • - Significant findings include an association between slower AIDS progression and SNPs in the PARD3B gene, particularly rs11884476, which showed a strong effect on disease rate and highlighted a specific PARD3B haplotype linked to this progression.
  • - The results suggest that genetic factors, like certain SNPs, could play a crucial role in influencing how quickly AIDS develops, pointing to new avenues for understanding and potentially treating this condition.
View Article and Find Full Text PDF

Background: As we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome.

View Article and Find Full Text PDF

Genetic variation in MYH9, encoding nonmuscle myosin IIA heavy chain, has been associated recently with increased risk for kidney disease. Previously, MYH9 missense mutations have been shown to cause the autosomal-dominant MYH9 (ADM9) spectrum, characterized by large platelets, leukocyte Döhle bodies, and, variably, sensorineural deafness, cataracts, and glomerulopathy. Genetic testing is indicated for familial and sporadic cases that fit this spectrum.

View Article and Find Full Text PDF

Mapping by admixture linkage disequilibrium (LD) detected strong association between nonmuscle myosin heavy chain 9 gene (MYH9) variants on chromosome 22 and nondiabetic nephropathy in African Americans. MYH9-related variants were posited to be the probable, but not necessarily the definitive, causal variants as a result of impressive statistical evidence of association, renal expression, and a role in autosomal dominant MYH9 disorders characterized by progressive glomerulosclerosis (Epstein and Fechtner syndromes). Dense mapping within MYH9 revealed striking LD patterns and racial variation in risk allele frequencies, suggesting population genetic factors such as selection may be operative in this region.

View Article and Find Full Text PDF

African Americans have higher rates of kidney disease than European Americans. Here, we show that, in African Americans, focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22 {FSGS odds ratio = 10.5 [95% confidence interval (CI) 6.

View Article and Find Full Text PDF

MYH9 was recently identified as renal susceptibility gene (OR 3-8, p < 10(-8)) for major forms of kidney disease disproportionately affecting individuals of African descent. The risk haplotype (E-1) occurs at much higher frequencies in African Americans (> or = 60%) than in European Americans (< 4%), revealing a genetic basis for a major health disparity. The population distributions of MYH9 risk alleles and the E-1 risk haplotype and the demographic and selective forces acting on the MYH9 region are not well explored.

View Article and Find Full Text PDF

Admixture mapping is based on the hypothesis that differences in disease rates between populations are due in part to frequency differences in disease-causing genetic variants. In admixed populations, these genetic variants occur more often on chromosome segments inherited from the ancestral population with the higher disease variant frequency. A genome scan for disease association requires only enough markers to identify the ancestral chromosome segments; for recently admixed populations, such as African Americans, 1,500-2,500 ancestry-informative markers (AIMs) are sufficient.

View Article and Find Full Text PDF