Publications by authors named "George W J Harston"

Article Synopsis
  • The study aims to find biomarkers in idiopathic pulmonary fibrosis (IPF) that can predict adverse outcomes and help monitor disease progression over time.
  • Researchers used data from two groups of IPF patients and analyzed CT imaging biomarkers to assess disease severity and their relationship with lung function and survival.
  • The weighted reticulovascular score (WRVS) showed significant potential as a predictive tool, with a baseline score of ≥15% indicating a higher risk of mortality and an increase of 3% in WRVS correlating with reduced survival, surpassing traditional visual assessments of fibrosis.
View Article and Find Full Text PDF

Purpose: In chemical exchange saturation transfer imaging, saturation effects between 2 to 5 ppm (nuclear Overhauser effects, NOEs) have been shown to exhibit contrast in preclinical stroke models. Our previous work on NOEs in human stroke used an analysis model that combined NOEs and semisolid MT; however their combination might feasibly have reduced sensitivity to changes in NOEs. The aim of this study was to explore the information a 4-pool Bloch-McConnell model provides about the NOE contribution in ischemic stroke, contrasting that with an intentionally approximate 3-pool model.

View Article and Find Full Text PDF

Background And Objective: In hyperacute ischaemic stroke, T2 of cerebral water increases with time. Quantifying this change may be informative of the extent of tissue damage and onset time. Our objective was to develop a user-unbiased method to measure the effect of cerebral ischaemia on T2 to study stroke onset time-dependency in human acute stroke lesions.

View Article and Find Full Text PDF

Collateral perfusion is important for sustaining tissue viability in acute ischemic stroke. Conventional techniques for its visualization are invasive, require contrast agents and demonstrate collateral vessels, rather than measuring perfusion directly. In this study we utilize a non-invasive, non-contrast magnetic resonance imaging (MRI)-based method to directly quantify collateral perfusion in acute stroke patients.

View Article and Find Full Text PDF

Metabolic markers of baseline brain oxygenation and tissue perfusion have an important role to play in the early identification of ischaemic tissue in acute stroke. Although well established MRI techniques exist for mapping brain perfusion, quantitative imaging of brain oxygenation is poorly served. Streamlined-qBOLD (sqBOLD) is a recently developed technique for mapping oxygenation that is well suited to the challenge of investigating acute stroke.

View Article and Find Full Text PDF

Background And Purpose: Lesion expansion in the week after acute stroke involves both infarct growth (IG) and anatomic distortion (AD) because of edema and hemorrhage. Enabling separate quantification would allow clinical trials targeting these distinct pathological processes. We developed an objective and automated approach to quantify these processes at 24 hours and 1 week.

View Article and Find Full Text PDF

Objective: Accurate representation of final infarct volume is essential for assessing the efficacy of stroke interventions in imaging-based studies. This study defines the impact of image registration methods used at different timepoints following stroke, and the implications for infarct definition in stroke research.

Methods: Patients presenting with acute ischemic stroke were imaged serially using magnetic resonance imaging.

View Article and Find Full Text PDF

Background And Purpose: Perfusion-weighted imaging is used to select patients with acute ischemic stroke for intervention, but knowledge of cerebral perfusion can also inform the understanding of ischemic injury. Arterial spin labeling allows repeated measurement of absolute cerebral blood flow (CBF) without the need for exogenous contrast. The aim of this study was to explore the relationship between dynamic CBF and tissue outcome in the month after stroke onset.

View Article and Find Full Text PDF

The original concept of the ischaemic penumbra suggested imaging of regional cerebral blood flow and metabolism would be required to identify tissue that may benefit from intervention. Amide proton transfer magnetic resonance imaging, a chemical exchange saturation transfer technique, has been used to derive cerebral intracellular pH in preclinical stroke models and has been proposed as a metabolic marker of ischaemic penumbra. In this proof of principle clinical study, we explored the potential of this pH-weighted magnetic resonance imaging technique at tissue-level.

View Article and Find Full Text PDF

Lacunar infarction is traditionally ascribed to lipohyalinosis or microatheroma. We report the case of 40-year-old man, without traditional risk factors for ischemic stroke, who presented to the Emergency Department with recurrent episodes of transient right-sided weakness and paresthesia. Lacunar infarction was confirmed on diffusion-weighted MRI and blood tests showed a marked polycythemia.

View Article and Find Full Text PDF

Purpose: To compare quantification of the amide proton transfer (APT) effect pre- and post-gadolinium contrast agent (Gd) administration in order to establish to what extent Gd alters quantification of the APT effect.

Materials And Methods: Four patients with internal carotid stenosis were recruited. APT imaging was acquired pre- and post-contrast in two sessions (before and after surgery) to assess the extent of relaxation time, T1 , change on APT effect calculated using magnetization transfer ratio asymmetry analysis at offsets of ±3.

View Article and Find Full Text PDF

Alteplase is the only drug licensed for acute ischemic stroke, and in this formulation, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) is stabilized in a solution of L-arginine. Improved functional outcomes after alteplase administration have been shown in clinical trials, along with improved histological and behavioral measures in experimental models of embolic stroke. However, in animal models of mechanically induced ischemia, alteplase can exacerbate ischemic damage.

View Article and Find Full Text PDF

Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function.

View Article and Find Full Text PDF