Publications by authors named "George V Stauffer"

In E. coli, the periplasmic proteins HdeA and HdeB have chaperone-like functions, suppressing aggregation of periplasmic proteins under acidic conditions. A microarray analysis of RNA isolated from an E.

View Article and Find Full Text PDF

The Escherichia coli sRNA GcvB regulates several genes involved in transport of amino acids and peptides (sstT, oppA, dppA, and cycA). Two regions of GcvB from nt +124 to +161 and from nt +73 to +82 are complementary with essentially the same region of the cycA mRNA. Transcriptional fusions of cycA to lacZ showed the region of cycA mRNA that can pair with either region of GcvB is necessary for regulation by GcvB.

View Article and Find Full Text PDF

The gcvB gene encodes a small non-translated RNA (referred to as GcvB) that regulates oppA and dppA, two genes that encode periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Hfq, an RNA chaperone protein, binds many small RNAs and is required for the small RNAs to regulate expression of their respective target genes. We showed that repression by GcvB of dppA : : lacZ and oppA : : phoA translational fusions is dependent upon Hfq.

View Article and Find Full Text PDF

In Escherichia coli, the gcvB gene encodes a small non-translated RNA that regulates several genes involved in transport of amino acids and peptides (including sstT, oppA and dppA). Microarray analysis identified cycA as an additional regulatory target of GcvB. The cycA gene encodes a permease for the transport of glycine, d-alanine, d-serine and d-cycloserine.

View Article and Find Full Text PDF

In Escherichia coli, the gcvB gene encodes a nontranslated RNA (referred to as GcvB) that regulates OppA and DppA, two periplasmic binding proteins for the oligopeptide and dipeptide transport systems. An additional regulatory target of GcvB, sstT, was found by microarray analysis of RNA isolated from a wild-type strain and a gcvB deletion strain grown to mid-log phase in Luria-Bertani broth. The SstT protein functions to transport L-serine and L-threonine by sodium transport into the cell.

View Article and Find Full Text PDF

The gcvB gene encodes two small, nontranslated RNAs that regulate OppA and DppA, periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Analysis of the gcvB sequence identified a region of complementarity near the ribosome-binding sites of dppA and oppA mRNAs. Several changes in gcvB predicted to reduce complementarity of GcvB with dppA-lacZ and oppA-phoA reduced the ability of GcvB to repress the target RNAs while other changes had no effect or resulted in stronger repression of the target mRNAs.

View Article and Find Full Text PDF

Background: In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism.

View Article and Find Full Text PDF

The glycine cleavage enzyme system in Escherichia coli provides one-carbon units for cellular methylation reactions. The gcvB gene encodes two small RNAs that in turn regulate other genes. The GcvA protein is required for expression of both the gcvTHP (P(gcvT)) and gcvB (P(gcvB)) promoters.

View Article and Find Full Text PDF

The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium.

View Article and Find Full Text PDF

The Escherichia coli gcvTHP operon is under control of the LysR-type transcriptional regulator GcvA. GcvA activates the operon in the presence of glycine and represses the operon in its absence. Repression by GcvA is dependent on a second regulatory protein, GcvR.

View Article and Find Full Text PDF

The Escherichia coli glycine cleavage enzyme system, encoded by the gcvTHP operon, catalyses the oxidative cleavage of glycine to CO(2), NH(3) and a one-carbon methylene group. Transcription of the gcv operon is positively regulated by GcvA and negatively regulated by GcvA and GcvR. Using a LexA-based system for analysing protein heterodimerization, it is shown that GcvR interacts directly with GcvA in vivo to repress gcvTHP expression.

View Article and Find Full Text PDF

GcvA binds to three sites in the gcvTHP control region, from base -34 to -69 (site 1), from base -214 to -241 (site 2) and from base -242 to -271 (site 3). Previous results suggested that sites 3 and 2 are required for both GcvA-dependent activation and repression of a gcvT::lacZ fusion. However, the results were less clear as to the role of site 1.

View Article and Find Full Text PDF

The GcvA protein both activates and represses the gcv operon and negatively regulates its own transcription. GcvA binds to three sites in the gcv control region and to one site in the gcvA control region; each of these binding sites contains the conserved 5 bp DNA sequence 5'-CTAAT-3'. This report describes the role this DNA sequence plays in autoregulation and expression of gcvA.

View Article and Find Full Text PDF

The Escherichia coli glycine-cleavage enzyme system (gcvTHP and lpd gene products) provides C1 units for cellular methylation reactions. Both the GcvA and leucine-responsive regulatory (Lrp) proteins are required for regulation of the gcv operon. One model proposed for gcv regulation is that Lrp plays a structural role, bending the DNA to allow GcvA to function as either an activator or a repressor in response to environmental signals.

View Article and Find Full Text PDF

GcvA and Lrp are both necessary for activation of the gcv operon. The upstream GcvA-binding sites 3 and 2 were separated from the Lrp-binding region and the rest of the gcv control region. Moving these sites by 1 or 2 helical turns of DNA further from the gcv promoter reduces, but does not eliminate, either GcvA-mediated activation or repression of a gcvT::lacZ gene fusion.

View Article and Find Full Text PDF

Both GcvA and Lrp are required for normal regulation of the gcv operon. Moving the GcvA-binding sites 3 and 2 and the Lrp-binding region either closer to, or further away from, the gcv promoter by approximately one helical turn of DNA resulted in a less than twofold decrease in glycine-mediated activation or inosine-mediated repression of a gcvT::IacZ fusion. Moving these sites approximately two helical turns of DNA away from the gcv promoter resulted in a further loss of both activation and repression; moving these sites approximately three helical turns of DNA from the gcv promoter resulted in an essentially complete loss of both glycine-mediated activation and inosine-mediated repression.

View Article and Find Full Text PDF