The persistent inter-model spread in the response of global-mean surface temperature to increased CO (known as the "Equilibrium Climate Sensitivity," or "ECS") is a crucial problem across model generations. This work examines the influence of the models' present-day atmospheric circulation climatologies, and the accompanying climatological cloud radiative effects, in explaining that spread. We analyze the Coupled Model Intercomparison Project Phase 6 (CMIP6) models and find that they simulate a more poleward, and thus more realistic, edge of the Hadley cell (HC) in the Southern Hemisphere than the CMIP5 models, although the climatological shortwave cloud radiative effects are similar in the two generations of models.
View Article and Find Full Text PDFThis study examines the atmospheric properties of weather states (WSs) derived from the International Satellite Cloud Climatology Project over the Western North Atlantic Ocean. In particular, radiation and aerosol data corresponding to two sites in the study domain, Pennsylvania State University and Bermuda, were examined to characterize the atmospheric properties of the various satellite-derived WSs. At both sites, the fair weather WS was most prevalent, followed by the cirrus WS.
View Article and Find Full Text PDFThis paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same.
View Article and Find Full Text PDFThis study analyzes Coupled Model Intercomparison Project phase 5 (CMIP5) model output to examine the covariability of interannual Southern Hemisphere Hadley cell (HC) edge latitude shifts and shortwave cloud radiative effect (SWCRE). In control climate runs, during years when the HC edge is anomalously poleward, most models substantially reduce the shortwave radiation reflected by clouds in the lower midlatitude region (LML; ~28°S-~48°S), although no such reduction is seen in observations. These biases in HC-SWCRE covariability are linked to biases in the climatological HC extent.
View Article and Find Full Text PDFIncreasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'.
View Article and Find Full Text PDF