Publications by authors named "George Tsekouras"

Graph neural networks (GNNs) have been increasingly employed in the field of Parkinson's disease (PD) research. The use of GNNs provides a promising approach to address the complex relationship between various clinical and non-clinical factors that contribute to the progression of PD. This review paper aims to provide a comprehensive overview of the state-of-the-art research that is using GNNs for PD.

View Article and Find Full Text PDF

Renewable, or green, hydrogen will play a critical role in the decarbonisation of hard-to-abate sectors and will therefore be important in limiting global warming. However, renewable hydrogen is not cost-competitive with fossil fuels, due to the moderate energy efficiency and high capital costs of traditional water electrolysers. Here a unique concept of water electrolysis is introduced, wherein water is supplied to hydrogen- and oxygen-evolving electrodes via capillary-induced transport along a porous inter-electrode separator, leading to inherently bubble-free operation at the electrodes.

View Article and Find Full Text PDF

In this paper, a novel method to modify color images for the protanopia and deuteranopia color vision deficiencies is proposed. The method admits certain criteria, such as preserving image naturalness and color contrast enhancement. Four modules are employed in the process.

View Article and Find Full Text PDF

The use of graphenic carbon is attractive as a basal or intermediate support for catalytic particles in advanced catalytic electrodes. This popularity is motivated by its excellent electrical properties and ability to form foliated conformal coatings of exceptional surface area and flexibility. Surface- and edge-functionalisation of graphene sheets affords diverse routes to the covalent attachment of candidate catalytic species.

View Article and Find Full Text PDF

A significant and long-standing problem in electrochemistry has demanded the need for gas diffusion electrodes that are "flood-proof" and "leak-proof" when operated with a liquid electrolyte. The absence of a solution to this problem has, effectively, made it unviable to use gas diffusion electrodes in many electrochemical manufacturing processes, especially as " gas-depolarized" counter electrodes with significantly decreased energy consumption. In this work, Gortex membranes (also known as expanded PTFE or ePTFE) have been studied as novel, leak-proof substrates for gas diffusion electrodes [PTFE = poly(tetrafluoroethylene)].

View Article and Find Full Text PDF

Surfaces decorated with uniformly dispersed catalytically active nanoparticles play a key role in many fields, including renewable energy and catalysis. Typically, these structures are prepared by deposition techniques, but alternatively they could be made by growing the nanoparticles in situ directly from the (porous) backbone support. Here we demonstrate that growing nano-size phases from perovskites can be controlled through judicious choice of composition, particularly by tuning deviations from the ideal ABO3 stoichiometry.

View Article and Find Full Text PDF

In this paper we propose a learning mechanism to systematically design fast fuzzy clustering-based vector quantizers. Although the utilization of fuzzy clustering in vector quantization is able to reduce the dependence on initialization, it finally obtains high computational cost. This problem has been investigated by many researchers.

View Article and Find Full Text PDF

Zn-Zn porphyrin dimers have been incorporated into thin dye-sensitized solar cells (DSSCs) to boost their light harvesting efficiency. The photoexcited dimers show efficient and fast electron injection into TiO(2) indicating that both photoexcited chromophores contribute to current generation. The improved light harvesting ability coupled to enhanced DSSC performance demonstrates the potential of 3-D light harvesting arrays as next generation light harvesters for artificial solar energy conversion systems.

View Article and Find Full Text PDF

Purpose: In this paper a new nonlinear multivariable regression method is presented in order to investigate the relationship between the central corneal thickness (CCT) and the Heidelberg Retina Tomograph (HRTII) optic nerve head (ONH) topographic measurements, in patients with established glaucoma.

Methods: Forty nine eyes of 49 patients with glaucoma were included in this study. Inclusion criteria were patients with (a) HRT II ONH imaging of good quality (SD < 30 mum), (b) reliable Humphrey visual field tests (30-2 program), and (c) bilateral CCT measurements with ultrasonic contact pachymetry.

View Article and Find Full Text PDF

An electrochemically bistable ruthenium polypyridyl complex was immobilised on platinum electrodes via amide condensation with an amine-terminated self-assembled thiol monolayer and underwent rapid electron transfer-induced linkage isomerism.

View Article and Find Full Text PDF