Due to rapid industrialization, novel water-quality monitoring techniques for the detection of highly toxic and hazardous heavy metal ions are essential. Herein, a hybrid noble nanoparticle/DNAzyme electrochemical biosensor is proposed for the simultaneous and label-free detection of Pb and Cr in aqueous solutions. The sensor is based on the combination of a two-dimensional naked-platinum nanoparticle film and DNAzymes, whose double-helix configuration disassembles into smaller fragments in the presence of target-specific heavy metal ions.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab.
View Article and Find Full Text PDFTo date, numerous aptamer-based biosensing platforms have been developed for sensitive and selective monitoring of target analytes, relying on analyte-induced conformational changes in the aptamer for the quantification of the analyte and the conversion of the binding event into a measurable signal. Despite the impact of these conformational rearrangements on sensor performance, the influence of the environment on the structural conformations of aptamers has rarely been investigated, so the link between parameters directly influencing aptamer folding and the ability of the aptamer to bind to the target analyte remains elusive. Herein, the effect a number of variables have on an aptamer's 3D structure was examined, including the pH of the buffering medium, as well as the anchoring of the aptamer on a solid support, with the use of two label-free techniques.
View Article and Find Full Text PDFThe presence of heavy metal ions in soil, air and water constitutes an important global environmental threat, as these ions accumulate throughout the food chain, contributing to the rise of chronic diseases, including, amongst others, cancer and kidney failure. To date, many efforts have been made for their detection, but there is still a need for the development of sensitive, low-cost, and portable devices able to conduct on-site detection of heavy metal ions. In this work, we combine microfluidic technology and electrochemical sensing in a plastic chip for the selective detection of heavy metal ions utilizing DNAzymes immobilized in between platinum nanoparticles (PtNPs), demonstrating a reliable portable solution for water pollution monitoring.
View Article and Find Full Text PDFEnzyme-based electrochemical biosensors have been widely deployed for the detection of a range of contaminants in different food products due to their significant advantages over other (bio)sensing techniques. Nevertheless, their performance is greatly affected by the sample matrix itself or by the matrix they are presented with in pretreated samples, both of which can impact the accuracy as well as the sensitivity of the measurements. Therefore, and in order to acquire reliable and accurate measurements, matrix effects and their influence on sensor performance should be taken into consideration.
View Article and Find Full Text PDFAntibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance.
View Article and Find Full Text PDFIn this paper, we present the development of a photonic biosensor device for cancer treatment monitoring as a complementary diagnostics tool. The proposed device combines multidisciplinary concepts from the photonic, nano-biochemical, micro-fluidic and reader/packaging platforms aiming to overcome limitations related to detection reliability, sensitivity, specificity, compactness and cost issues. The photonic sensor is based on an array of six asymmetric Mach Zender Interferometer (aMZI) waveguides on silicon nitride substrates and the sensing is performed by measuring the phase shift of the output signal, caused by the binding of the analyte on the functionalized aMZI surface.
View Article and Find Full Text PDFDespite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation.
View Article and Find Full Text PDFWe extend our previous simulation study and we present experimental results regarding our Fast Fourier Transform method for the calculation of the resonance shifts in biosensors based on micro-ring resonators (MRRs). For the simulation study, we use a system model with a tunable laser at 850 nm, an MRR with 1.5∙10 quality factor, and a detection system with 50 dB maximum signal-to-noise ratio, and investigate the impact on the system performance of factors like the number of the resonance peaks inside the scanning window, the wavelength dependence of the laser power, and the asymmetry of the transfer functions of the MRRs.
View Article and Find Full Text PDFPharmacol Ther
October 2017
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors.
View Article and Find Full Text PDFIn this paper, we present the immobilization of thiol-modified aptamers on alkyne- or alkene-terminated silicon nitride surfaces by laser-induced click chemistry reactions. The aptamers are printed onto the surface by laser-induced forward transfer (LIFT), which also induces the covalent bonding of the aptamers by thiol-ene or thiol-yne reactions that occur upon UV irradiation of the thiol-modified aptamers with ns laser pulses. This combination of LIFT and laser-induced click chemistry allows the creation of high-resolution patterns without the need for masks.
View Article and Find Full Text PDFStud Health Technol Inform
February 2018
In this article novel approaches for the improvement of the recorded signal coupled with the feasibility of multiple analyte detection, irrespective of the biosensor platform are being presented. The techniques that have been developed address commonly encountered issues that have traditionally hindered the commercialization of biosensors, such as cost, reproducibility and sensitivity and most importantly multianalyte detection. The fluorescence-based detection of copper is being described as an example of the use of Laser Induced Forward Transfer technique (LIFT) for the immobilization of biomolecules with high spatial resolution, in addition to a technique that involves the displacement of a short complementary strand to the immobilized probe molecule for the quantification of analyte binding and the enhancement of the recorded signal.
View Article and Find Full Text PDF