Publications by authors named "George Stylios"

We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.

View Article and Find Full Text PDF

The structure of a fabric is a highly complex assembly of fibres, which have order and regularity as well as disorder and randomness. The complexity of the structure poses challenges in defining its mechanical behaviour, particularly at low stress, which is typical to end uses. The coexistence of multiple deformations and the high degree of nonlinearity of the fabric due to fibre friction make its stress-strain relationship complicated.

View Article and Find Full Text PDF

To meet the complex and diverse demands for low-stress mechanical measurements of fabrics and other flexible materials, two integrated multidimensional force sensors with the same structure but different ranges were explored. They can support both rapid and precise low-noise, high-precision, low-cost, easy-to-use, reliable, and intelligent solutions for the complex measurement of fabric mechanics. Having analysed the mechanical relationship of the parallel beam theory, and considering the specific requirements of fabric measurement, a novel multi-dimensional force sensor is designed, capable of measuring tensile, shear, and buckling properties.

View Article and Find Full Text PDF

This review is a critical analysis of the current state-of-the-art in core spun yarn textile triboelectric nanogenerators (CSY-T-TENGs) for self-powered smart sensing applications. The rapid expansion of wireless communication, flexible conductive materials, and wearable electronics over the last ten years is now demanding autonomous energy, which has created a new research space in the field of wearable T-TENGs. Current research is exploring T-TENGs made from CSYs as stable and reliable energy harvesters and sensing devices for modern wearable IoT platforms.

View Article and Find Full Text PDF

Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM).

View Article and Find Full Text PDF

Noise is a common problem in wearable electrocardiogram (ECG) monitoring systems because the presence of noise can corrupt the ECG waveform causing inaccurate signal interpretation. By comparison with electromagnetic interference and its minimization, the reduction of motion artifact is more difficult and challenging because its time-frequency characteristics are unpredictable. Based on the characteristics of motion artifacts, this work uses adaptive filtering, a specially designed ECG device, and an Impedance Pneumography (IP) data acquisition system to combat motion artifacts.

View Article and Find Full Text PDF

Using an environmentally friendly approach for eliminating methylene blue from an aqueous solution, the authors developed a unique electrospun nanofiber membrane made of a combination of polyethersulfone and hydroxypropyl cellulose (PES/HPC). SEM results confirmed the formation of a uniformly sized nanofiber membrane with an ultrathin diameter of 168.5 nm (for PES/HPC) and 261.

View Article and Find Full Text PDF

In this work, Eucommia ulmoides leaf extract (EUOLstabilized silver nanoparticles (EUOL@AgNPs) incorporated sulfonated polyether sulfone (SPES)/polyethersulfone (PES) electrospun nanofiber membranes (SP ENMs) were prepared by electrospinning, and they were studied for the removal of lead (Pb(II)) and cadmium (Cd(II)) ions from aqueous solutions. The SP ENMs with various EUOL@AgNPs loadings were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscope, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle (CA) measurements. The adsorption studies showed that the adsorption of Cd(II) and Pb(II) was rapid, achieved equilibrium within 40 min and 60 min, respectively and fitted with non-linear pseudo-second-order (PSO) kinetics model.

View Article and Find Full Text PDF
Novel Smart Textiles.

Materials (Basel)

February 2020

The sensing/adapting/responding, multifunctionality, low energy, small size and weight, ease of forming, and low-cost attributes of SMART textiles and their multidisciplinary scope offer numerous end uses in medical, sports and fitness, military, fashion, automotive, aerospace, built environment, and energy industries. The research and development for these new and high-value materials crosses scientific boundaries, redefines material science design and engineering, and enhances quality of life and our environment. "Novel SMART Textiles" is a focused special issue that reports the latest research of this field and facilitates dissemination, networking, discussion, and debate.

View Article and Find Full Text PDF

A new SMART fabric concept is reported in which visual changes of the material are designed to influence different human emotions. This is achieved by developing a novel electrochromic composite yarn, knitted into pattern-changing fabrics, which has high response in temperature change and uniform contrast. The influence of these pattern-changing effects on the response of the human visual brain is investigated further by using event-related potential (ERP).

View Article and Find Full Text PDF

This research presents an investigation of novel textile-based strain sensors and evaluates their performance. The electrical resistance and mechanical properties of seven different textile sensors were measured. The sensors are made up of a conductive thread, composed of silver plated nylon 117/17 2-ply, 33 tex and 234/34 4-ply, 92 tex and formed in different stitch structures (304, 406, 506, 605), and sewn directly onto a knit fabric substrate (4.

View Article and Find Full Text PDF

In this review, an attempt was made to summarize some of the recent developments in the spinnability of purified collagen. Due to the excellent biological properties of this biopolymer, it is often chosen among other biomimetic materials for processing into fibrous assemblies. During the last two decades, the challenges associated with regenerated collagen fibers comprising inability to achieve sufficient tensile strength, reproducibility and failure to replicate the internal fibrillar structure, which are due to the lost properties from hierarchical structure consistent with collagen in native tissues, have been considered using the common spinning and the modification methods.

View Article and Find Full Text PDF

Collagen is an important natural biopolymer that cannot be electrospun easily due to the lost properties occurs in the associated degrading chains while dissolving and spinning. Grafting polymerization of methyl methacrylate-co-Ethyl Acrylate was applied to modify the surface of acid soluble collagen (ASC). The branched copolymer on the surface of collagen significantly influenced the initial viscosity.

View Article and Find Full Text PDF

One step fabrication of the three dimension (3D) fibrous structure of Collagen-g-poly(MMA-co-EA)/Nylon6 was investigated by controlling the experimental conditions during coaxial electrospinning. This 3D fibrous structure is the result of interactions of two polymeric systems with a varied capability to be electrostatically polarized under the influence of the external electric field; the solution with the higher conductivity into the inner spinneret and the solution with the lesser conductivity into the outer capillary of the coaxial needle. This set-up was to obtain bimodal fiber fabrication in micro and nanoscale developing a spatial structure; the branches growing off a trunk.

View Article and Find Full Text PDF

Wearable sensors have great potential uses in personal health monitoring systems, in which textile-based electrodes are particularly useful because they are comfortable to wear and are skin and environmentally friendly. In this paper, a hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking was introduced. The hybrid textile electrode consists of two parts: A textile electrode for ECG monitoring, and a motion sensor for patient activity tracking.

View Article and Find Full Text PDF

A collagen-based copolymer, ASC-g-Poly(methyl methacrylate-co-Ethyl Acrylate), was synthesized in the presence of Graphene Oxide (GO) via an in-situ polymerization. The presence of GO that increased the accessible surface area for initiated collagen chains allowed for an accelerated polymerization with highly improved grafting performance and efficiency. This was conducted from two polymerization systems with varied comonomer feed ratios, in which two distinguished GO loadings were used.

View Article and Find Full Text PDF

In this study, Acid Soluble Collagen-g-P(methyl methacrylate-co-ethyl acrylate) (CME) was synthesized to take advantage of the flexibility of the resulted branched polymer chains and the high density of their chain entanglement. The coaxial electrospinning technique was applied to study the effect of electrically and structurally varied materials on fiber formation and fiber morphology when CME and Nylon 66 were electrospun as core and shell respectively. By tailoring the electrostatic field, different fiber content was achieved.

View Article and Find Full Text PDF

The present work highlights the formation of a novel green nanofiber based on H₂O₂-assisted water-soluble chitosan/polyvinyl alcohol (WCHT/PVA) by using water as an ecofriendly solvent and genipin used as a nontoxic cross-linker. The 20/80 blend ratio was found to have the most optimum uniform fiber morphology. WCHT retained the same structure as WCHT.

View Article and Find Full Text PDF

Currently, green-based materials are receiving attention in a quest to achieve a sustainable environment for human life. Herein, we report an investigation of developing a simple novel green nanofibre by using H₂O₂-assisted water soluble chitosan/polyvinyl alcohol (WCHT/PVA) in the presence of water as an eco-friendly solvent. The effect of various process parameters on the mean fibre diameter was investigated based on the Taguchi L₉ ( 3 4 ) orthogonal array experimental design.

View Article and Find Full Text PDF

The capability for sustained and gradual release of pharmaceuticals is a major requirement in the development of a guided antimicrobial bacterial control system for clinical applications. In this study, PVA gels with varying constituents that were manufactured via a refreeze/thawing route, were found to have excellent potential for antimicrobial delivery for bone infections. Cefuroxime Sodium with poly(ethylene glycol) was incorporated into 2 delivery systems poly(e-caprolactone) (PCL) and hydroxyapatite (HA), by a modified emulsion process.

View Article and Find Full Text PDF

An overview of the current state of tissue engineering material systems used in bone healing is presented. A variety of fabrication processes have been developed that have resulted in porous implant substrates that can address unresolved clinical problems. The merits of these biomaterial systems are evaluated in the context of the mechanical properties and biomedical performances most suitable for bone healing.

View Article and Find Full Text PDF

As medical practice enters a new era with the exciting new applications of nanoscience and technology, the paper introduces the philosophy and the principles of controlled drug delivery and the generation of tissue. It further describes and discusses new research into nanoporous materials and how encapsulation of various medical substances can create stimuli-controlled precision delivery systems. The paper goes on to highlight the process of those new materials for medical applications citing particularly a successful process for coating them onto flexible materials such as fabrics.

View Article and Find Full Text PDF