Coronavirus-infected cells contain double-membrane vesicles (DMVs) that are key for viral RNA replication and transcription, perforated by hexameric pores connecting the vesicular lumen to the cytoplasm. How pores form and traverse two membranes, and how DMVs organize RNA synthesis, is unknown. Using structure prediction and functional assays, we show that the nonstructural viral membrane protein nsp4 is the key pore organizer, spanning the double membrane and forming most of the pore lining.
View Article and Find Full Text PDFInfectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motivates the urgent identification of alternative ways of fighting bacteria.
View Article and Find Full Text PDFIntroduction: Although the incidence and mortality rates of colorectal cancer exhibit significant variability, it remains one of the most prevalent cancers worldwide. Endeavors to prevent colorectal cancer development focus on detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps relies on hematoxylin and eosin staining examination.
View Article and Find Full Text PDFWe introduce a novel approach in optical engineering by combining Dammann gratings with binary Fresnel zone plates to create a unique hybrid optical element with enhanced energetic efficiency of its focal spots. Traditionally, binary Fresnel zone plates focus light at multiple points with varying intensities, while Dammann gratings are renowned for their efficient and uniform light splitting capabilities. Our innovation lies in merging these two elements and generating a binary circular Dammann (varying along the radial direction) Fresnel zone plate that concentrates most of the incident light into a small and desired number of focused points with equal intensities, rather than distributing light's energy non-equally across multiple points.
View Article and Find Full Text PDFThree incongruent melting LaNdGdYSc(BO) (LGYSB:Nd) crystals with different concentrations ( = 0.15, 0.05, and 0.
View Article and Find Full Text PDFThe fast and global spread of bacterial resistance to currently available antibiotics results in a great and urgent need for alternative antibacterial agents and therapeutic strategies. Recent studies on the application of nanomaterials as antimicrobial agents have demonstrated their potential for the management of infectious diseases. Among the diverse palette of nanomaterials currently used in biomedical applications, carbon nanotubes (CNTs) have gained massive interest given their many valuable properties, such as high thermal and electrical conductivity, tensile strength, flexibility convenient aspect ratio, and low fabrication costs.
View Article and Find Full Text PDFIn this study, we report on the synthesis of L-Cysteine (L-Cys)-coated magnetic iron oxide nanoparticles (NPs) loaded with doxorubicin (Dox). The FeO-L-Cys-Dox NPs were extensively characterized for their compositional and morpho-structural features using EDS, SAED, XRD, FTIR and TEM. XPS, Mӧssbauer spectroscopy and SQUID measurements were also performed to determine the electronic and magnetic properties of the FeO-L-Cys-Dox nanoparticles.
View Article and Find Full Text PDFSpectroscopic characteristics of RE ions (RE = Sm, Dy, and Pr) doped in partially disordered CaNbGaO-CNGG and CaLiNbGaO-CLNGG crystals are reviewed in detail to assess their prospects as laser crystals with emission in the visible spectral domain. All investigated crystals were grown using the Czochralski crystal growth technique. High-resolution absorption and emission measurements at different temperatures, as well as emission dynamics measurements, were performed on the grown crystals.
View Article and Find Full Text PDFMicroscopic evaluation of tissue sections stained with hematoxylin and eosin is the current gold standard for diagnosing thyroid pathology. Digital pathology is gaining momentum providing the pathologist with additional cues to traditional routes when placing a diagnosis, therefore it is extremely important to develop new image analysis methods that can extract image features with diagnostic potential. In this work, we use histogram and texture analysis to extract features from microscopic images acquired on thin thyroid nodule capsules sections and demonstrate how they enable the differential diagnosis of thyroid nodules.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit.
View Article and Find Full Text PDFIn the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (CaMg(PO)(OH); x = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh).
View Article and Find Full Text PDFSecond harmonic generation (SHG) microscopy is acknowledged as an established imaging technique capable to provide information on the collagen architecture in tissues that is highly valuable for the diagnostics of various pathologies. The polarization-resolved extension of SHG (PSHG) microscopy, together with associated image processing methods, retrieves extensive image sets under different input polarization settings, which are not fully exploited in clinical settings. To facilitate this, we introduce PSHG-TISS, a collection of PSHG images, accompanied by additional computationally generated images which can be used to complement the subjective qualitative analysis of SHG images.
View Article and Find Full Text PDFFront Med (Lausanne)
February 2022
Two-photon microscopy techniques are non-linear optical imaging methods which are gaining momentum in the investigation of fixed tissue sections, fresh tissue or even for experiments. Two-photon excited fluorescence and second harmonic generation are two non-linear optical contrast mechanisms which can be simultaneously used for offering complementary information on the tissue architecture. While the former can originate from endogenous autofluorescence sources (e.
View Article and Find Full Text PDFSecond harmonic generation (SHG) microscopy has emerged over the past two decades as a powerful tool for tissue characterization and diagnostics. Its main applications in medicine are related to mapping the collagen architecture of in-vivo, ex-vivo and fixed tissues based on endogenous contrast. In this work we present how H&E staining of excised and fixed tissues influences the extraction and use of image parameters specific to polarization-resolved SHG (PSHG) microscopy, which are known to provide quantitative information on the collagen structure and organization.
View Article and Find Full Text PDFBackground: In recent years, a variety of imaging techniques operating at nanoscale resolution have been reported. These techniques have the potential to enrich our understanding of bacterial species relevant to human health, such as antibiotic-resistant pathogens. However, owing to the novelty of these techniques, their use is still confined to addressing very particular applications, and their availability is limited owing to associated costs and required expertise.
View Article and Find Full Text PDFPolarization-resolved second harmonic generation microscopy is used to provide pixel-level angular distribution of collagen in thyroid nodule capsules. The pixel-level angular distribution is combined with textural analysis to quantify the collagen distribution in follicular adenoma (benign) and papillary thyroid carcinoma (malignant). Three second order nonlinear susceptibility tensor elements ratios, the collagen angular distribution and two parameters accounting for the collagen angular dispersion in different sized areas are extracted and corresponding images are computed in a pixel-by-pixel fashion.
View Article and Find Full Text PDFPapillary carcinoma is the most prevalent type of thyroid cancer. Its diagnosis requires accurate and subjective analyses from expert pathologists. Here we propose a method based on the Hough transform (HT) to detect and objectively quantify local structural differences in collagen thyroid nodule capsules.
View Article and Find Full Text PDFSuper-resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be used at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine-like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with stimulated emission depletion microscopy (STED). We assessed fluorescent labeling with KK114 for eleven Gram-positive and Gram-negative bacterial species and observed that this contrast agent binds to their cell membranes.
View Article and Find Full Text PDFDespite intense research on high entropy films, the mechanism of film growth and the influence of key factors remain incompletely understood. In this study, high entropy films consisting of five elements (FeCoNiCrAl) with columnar and nanometer-scale grains were prepared by magnetron sputtering. The high entropy film growth mechanism, including the formation of the amorphous domain, equiaxial nanocrystalline structure and columnar crystal was clarified by analyzing the microstructure in detail.
View Article and Find Full Text PDFThis paper provides a new method to compare and then reveal the vacancy sink efficiencies quantitively between different hetero-interfaces with a shared Cu layer in one sample, in contrast to previous studies, which have compared the vacancy sink efficiencies of interfaces in different samples. Cu-Nb-Cu-V nanoscale metallic multilayer composites (NMMCs) containing Cu/V and Cu/Nb interfaces periodically were prepared as research samples and bombarded with helium ions to create vacancies which were filled by helium bubbles. A special Cu layer shared by adjoining Cu/V and Cu/Nb interfaces exists, in which the implanted helium concentration reaches its maximum and remains nearly constant with a well-designed incident energy.
View Article and Find Full Text PDFNonlinear optical (NLO) crystals with incongruent melting of La Y Sc (BO) ( x + y + z = 4) (LYSB)-type were grown for the first time, to the best of our knowledge, by the Czochralski method. A special thermal assembly was used and the melt composition, growth direction, and the pulling and rotation rates have been optimized. Good optical quality LYSB crystal with a diameter of about 13 mm and a length of 25 mm has been grown from the LaYSc(BO) starting melt composition, along the c-axis direction, using a slow rotation rate of 8-10 rpm and a high pulling rate of 2 mm/h.
View Article and Find Full Text PDFQuantitative second harmonic generation microscopy was used to investigate collagen organization in the fibrillar capsules of human benign and malignant thyroid nodules. We demonstrate that the combination of texture analysis and second harmonic generation images of collagen can be used to differentiate between capsules surrounding the thyroid follicular adenoma and papillary carcinoma nodules. Our findings indicate that second harmonic generation microscopy can provide quantitative information about the collagenous capsule surrounding both the thyroid and thyroid nodules, which may complement traditional histopathological examination.
View Article and Find Full Text PDFApertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interpretation difficulties linked to the limited body of work performed so far in this field and hence the reduced volume of supporting information. We propose an imaging approach that holds significant potential for alleviating this issue, consisting of correlative imaging of biological specimens using a multimodal system that incorporates ASNOM and confocal laser scanning microscopy (CLSM), which allows placing near-field data into a well understood context of anatomical relevance.
View Article and Find Full Text PDFWe present a novel method for nanoscale reconstruction of complex refractive index by using scattering-type Scanning Near-field Optical Microscopy (s-SNOM). Our method relies on correlating s-SNOM experimental image data with computational data obtained through simulation of the classical oscillating point-dipole model. This results in assigning a certain dielectric function for every pixel of the s-SNOM images, which further results in nanoscale mapping of the refractive index.
View Article and Find Full Text PDF