Groove, understood as an enjoyable compulsion to move to musical rhythms, typically varies along an inverted U-curve with increasing rhythmic complexity (e.g., syncopation, pickups).
View Article and Find Full Text PDFIn order to better understand the musical properties which elicit an increased sensation of wanting to move when listening to music-groove-we investigate the effect of adding syncopation to simple piano melodies, under the hypothesis that syncopation is correlated to groove. Across two experiments we examine listeners' experience of groove to synthesized musical stimuli covering a range of syncopation levels and densities of musical events, according to formal rules implemented by a computer algorithm that shifts musical events from strong to weak metrical positions. Results indicate that moderate levels of syncopation lead to significantly higher groove ratings than melodies without any syncopation or with maximum possible syncopation.
View Article and Find Full Text PDFGroove is the experience of wanting to move when hearing music, such as snapping fingers or tapping feet. This is a central aspect of much music, in particular of music intended for dancing. While previous research has found considerable consistency in ratings of groove across individuals, it remains unclear how groove is induced, that is, what are the physical properties of the acoustic signal that differ between more and less groove-inducing versions.
View Article and Find Full Text PDFTyr Z of photosystem II mediates electron transfer from the water splitting site, a Mn4Ca cluster, to the specialized chlorophyll assembly P680. Due to its proton-limited redox properties and the proximity to the Mn cluster, it is thought to play a critical role in the proton-coupled electron transfer reactions that constitute the four-step oxidation mechanism (so-called S-state transitions) of water to molecular oxygen. Spectroscopic evidence for the Tyr Z radical has been scarce in intact preparations (it is difficult to probe it optically, and too short-lived for EPR characterization) until recently.
View Article and Find Full Text PDFThe S2 state of the oxygen-evolving complex (OEC) of photosystem II is heterogeneous, exhibiting two main EPR spectral forms, the multiline and the g = 4.1 signal. It is not clearly established whether this heterogeneity develops during the S1 to S2 transition or is already present in the precursor states.
View Article and Find Full Text PDF