Publications by authors named "George Sheppard"

The BET family of proteins consists of BRD2, BRD3, BRD4, and BRDt. Each protein contains two distinct bromodomains (BD1 and BD2). BET family bromodomain inhibitors under clinical development for oncology bind to each of the eight bromodomains with similar affinities.

View Article and Find Full Text PDF

Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi.

View Article and Find Full Text PDF

Novel conformationally constrained BET bromodomain inhibitors have been developed. These inhibitors were optimized in two similar, yet distinct chemical series, the 6-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (A) and the 1-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (B). Each series demonstrated excellent activity in binding and cellular assays, and lead compounds from each series demonstrated significant efficacy in in vivo tumor xenograft models.

View Article and Find Full Text PDF

The development of bromodomain and extraterminal domain (BET) bromodomain inhibitors and their examination in clinical studies, particularly in oncology settings, has garnered substantial recent interest. An effort to generate novel BET bromodomain inhibitors with excellent potency and drug metabolism and pharmacokinetics (DMPK) properties was initiated based upon elaboration of a simple pyridone core. Efforts to develop a bidentate interaction with a critical asparagine residue resulted in the incorporation of a pyrrolopyridone core, which improved potency by 9-19-fold.

View Article and Find Full Text PDF

ABBV-075 is a potent and selective BET family bromodomain inhibitor that recently entered phase I clinical trials. Comprehensive preclinical characterization of ABBV-075 demonstrated broad activity across cell lines and tumor models, representing a variety of hematologic malignancies and solid tumor indications. In most cancer cell lines derived from solid tumors, ABBV-075 triggers prominent G cell-cycle arrest without extensive apoptosis.

View Article and Find Full Text PDF

Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, K = 160 μM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays.

View Article and Find Full Text PDF

An NMR fragment screen for binders to the bromodomains of BRD4 identified 2-methyl-3-ketopyrroles 1 and 2. Elaboration of these fragments guided by structure-based design provided lead molecules with significant activity in a mouse tumor model. Further modifications to the methylpyrrole core provided compounds with improved properties and enhanced activity in a mouse model of multiple myeloma.

View Article and Find Full Text PDF

Hyperexpression of antiapoptotic BCL-2 family proteins allows cells to survive despite the receipt of signals that would ordinarily induce their deletion, a facet frequently exploited by tumors. Tumors addicted to the BCL-2 family proteins for survival are now being targeted therapeutically. For example, navitoclax, a BCL-2/BCL-XL/BCL-W inhibitor, is currently in phase I/II clinical trials in numerous malignancies.

View Article and Find Full Text PDF

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs.

View Article and Find Full Text PDF

This Letter describes the lead discovery, optimization, and biological characterization of a series of substituted 4-amino-1H-pyrazolo[3,4-d]pyrimidines as potent inhibitors of IGF1R, EGFR, and ErbB2. The leading compound 11 showed an IGF1R IC(50) of 12 nM, an EGFR (L858R) IC(50) of 31 nM, and an ErbB2 IC(50) of 11 nM, potent activity in cellular functional and anti-proliferation assays, as well as activity in an in vivo pharmacodynamic assay.

View Article and Find Full Text PDF

Background: The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics.

View Article and Find Full Text PDF

Emerging clinical and pre-clinical data indicate that both insulin-like growth factor receptor (IGF-IR) and members of the epidermal growth factor (EGF) family of receptor tyrosine kinases (RTKs) exhibit significant cross-talk in human cancers. Therefore, a small molecule that successfully inhibits the signaling of both classes of oncogenic kinases might provide an attractive agent for chemotherapeutic use. Herein, we disclose the structure activity relationships that led to the synthesis and biological characterization of 14, a novel small molecule inhibitor of both IGF-IR and members of the epidermal growth factor family of RTKs.

View Article and Find Full Text PDF

Methionine aminopeptidases (MetAPs) represent a unique class of protease that is capable of the hydrolytic removal of an N-terminal methionine residue from nascent polypeptide chains. MetAPs are physiologically important enzymes; hence, there is considerable interest in developing inhibitors that can be used as antiangiogenic and antimicrobial agents. A detailed kinetic and spectroscopic study has been performed to probe the binding of a triazole-based inhibitor and a bestatin-based inhibitor to both Mn(II)- and Co(II)-loaded type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs.

View Article and Find Full Text PDF

The catalytic activity of methionine aminopeptidase-2 (MetAP2) has been pharmacologically linked to cell growth, angiogenesis, and tumor progression, making this an attractive target for cancer therapy. An assay for monitoring specific protein changes in response to MetAP2 inhibition, allowing pharmacokinetic (PK)/pharmacodynamic (PD) models to be established, could dramatically improve clinical decision-making. Candidate MetAP2-specific protein substrates were discovered from undigested cell culture-derived proteomes by MALDI-/SELDI-MS profiling and a biochemical method using (35)S-Met labeled protein lysates.

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) and ErbB family of receptors are receptor tyrosine kinases that play important roles in cancer. Lack of response and resistance to therapies targeting ErbB receptors occur and are often associated with activation of the IGF-1R pathway. Combinations of agents that inhibit IGF-1R and ErbB receptors have been shown to synergistically block cancer cell proliferation and xenograft tumor growth.

View Article and Find Full Text PDF

This laboratory and others have shown that agents that inhibit the in vitro catalytic activity of methionine aminopeptidase-2 (MetAP2) are effective in blocking angiogenesis and tumor growth in preclinical models. However, these prototype MetAP2 inhibitors are clearly not optimized for therapeutic use in the clinic. We have discovered an orally active class of MetAP2 inhibitors, the anthranilic acid sulfonamides exemplified by A-800141, which is highly specific for MetAP2.

View Article and Find Full Text PDF

A high throughput screen of Abbott's compound repository revealed that the pyrazolo[3,4-d]pyrimidine class of kinase inhibitors possessed moderate potency for IGF-IR, a promising target for cancer chemotherapy. The synthesis and subsequent optimization of this class of compounds led to the discovery of 14, a compound that possesses in vivo IGF-IR inhibitory activity.

View Article and Find Full Text PDF

A series of aryl sulfonamides of 5,6-disubstituted anthranilic acids were identified as potent inhibitors of methionine aminopeptidase-2 (MetAP2). Small alkyl groups and 3-furyl were tolerated at the 5-position of anthranilic acid, while -OCH(3), CH(3), and Cl were found optimal for the 6-position. Placement of 2-aminoethoxy group at the 6-position enabled interaction with the second Mn(2+) but did not result in enhancement in potency.

View Article and Find Full Text PDF

Methionine aminopeptidase-2 (MetAP2) is a novel target for cancer therapy. As part of an effort to discover orally active reversible inhibitors of MetAP2, a series of anthranilic acid sulfonamides with micromolar affinities for human MetAP2 were identified using affinity selection by mass spectrometry (ASMS) screening. These micromolar hits were rapidly improved to nanomolar leads on the basis of insights from protein crystallography; however, the compounds displayed extensive binding to human serum albumin and had limited activity in cellular assays.

View Article and Find Full Text PDF

We have screened molecules for inhibition of MetAP2 as a novel approach toward antiangiogenesis and anticancer therapy using affinity selection/mass spectrometry (ASMS) employing MetAP2 loaded with Mn(2+) as the active site metal. After a series of anthranilic acid sulfonamides with micromolar affinities was identified, chemistry efforts were initiated. The micromolar hits were quickly improved to potent nanomolar inhibitors by chemical modifications guided by insights from X-ray crystallography.

View Article and Find Full Text PDF

Tumor vascularity is correlated with an aggressive disease phenotype in neuroblastoma, suggesting that angiogenesis inhibitors may be a useful addition to current therapeutic strategies. We previously showed that the antiangiogenic compound TNP-470, an irreversible methionine aminopeptidase 2 (MetAP2) inhibitor, suppressed local and disseminated human neuroblastoma growth rates in murine models but had significant associated toxicity at the effective dose. We have recently shown that a novel, reversible MetAP2 inhibitor, A-357300, significantly inhibits CHP-134-derived neuroblastoma s.

View Article and Find Full Text PDF

Kringle 5, a proteolytic fragment of human plasminogen has been shown to potently inhibit angiogenesis. The tetrapeptide KLYD derived from kringle 5 has been shown to capture many activities of kringle 5 in vitro. Further simplification has been achieved by replacement of the two central amino acids with a 4-aminobenzoic acid spacer group.

View Article and Find Full Text PDF

Substituted 3-amino-2-hydroxyamides and related hydroxyamides and acylhydrazines were identified as inhibitors of human methionine aminopeptidase-2 (MetAP2). Examination of substituents through parallel synthesis and iterative structure-based design allowed the identification of potent inhibitors with good selectivity against MetAP1. Diacylhydrazine 3t (A-357300) was identified as an analogue displaying inhibition of methionine processing and cellular proliferation in human microvascular endothelial cells (HMVEC).

View Article and Find Full Text PDF