Background: Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC.
View Article and Find Full Text PDFThe fundamental mission of the Chromosome-Centric Human Proteome Project (C-HPP) is the research of human proteome diversity, including rare variants. Liver tissues, HepG2 cells, and plasma were selected as one of the major objects for C-HPP studies. The proteogenomic approach, a recently introduced technique, is a powerful method for predicting and validating proteoforms coming from alternative splicing, mutations, and transcript editing.
View Article and Find Full Text PDF