Publications by authors named "George Sen"

The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses.

View Article and Find Full Text PDF

Several methods for generating human-skin-equivalent (HSE) organoid cultures are in use to study skin biology; however, few studies thoroughly characterize these systems. To fill this gap, we use single-cell transcriptomics to compare in vitro HSEs, xenograft HSEs, and in vivo epidermis. By combining differential gene expression, pseudotime analyses, and spatial localization, we reconstruct HSE keratinocyte differentiation trajectories that recapitulate known in vivo epidermal differentiation pathways and show that HSEs contain major in vivo cellular states.

View Article and Find Full Text PDF

Proper differentiation of the epidermis is essential to prevent water loss and to protect the body from the outside environment. Perturbations in this process can lead to a variety of skin diseases that impacts 1 in 5 people. While transcription factors that control epidermal differentiation have been well characterized, other aspects of transcription control such as elongation are poorly understood.

View Article and Find Full Text PDF

Stratified epithelia such as the epidermis require coordinated regulation of stem and progenitor cell proliferation, survival, and differentiation to maintain homeostasis. Integrin-mediated anchorage of the basal layer stem cells of the epidermis to the underlying dermis through extracellular matrix (ECM) proteins is crucial for this process. It is currently unknown how the expression of these integrins and ECM genes are regulated.

View Article and Find Full Text PDF

The skin typically tolerates exposure to various microbes and chemicals in the environment. Here, we investigated how the epidermis maintains this innate immune tolerance to stimuli that are recognized by Toll-like receptors (TLRs). Loss of tolerance to TLR ligands occurred after silencing of the histone deacetylases (HDACs) HDAC8 and HDAC9 in keratinocytes.

View Article and Find Full Text PDF

In adult tissue, stem and progenitor cells must tightly regulate the balance between proliferation and differentiation to sustain homeostasis. How this exquisite balance is achieved is an area of active investigation. Here, we show that epidermal genes, including ~30% of induced differentiation genes already contain stalled Pol II at the promoters in epidermal stem and progenitor cells which is then released into productive transcription elongation upon differentiation.

View Article and Find Full Text PDF

Proper epithelial development and homeostasis depends on strict control of oriented cell division. Current evidence shows that this process is regulated by intrinsic polarity factors and external spatial cues. Owing to the lack of an appropriate model system that can recapitulate the architecture of the skin, deregulation of spindle orientation in human epithelial carcinoma has never been investigated.

View Article and Find Full Text PDF

Impairments in the differentiation process can lead to skin diseases that can afflict ∼20% of the population. Thus, it is of utmost importance to understand the factors that promote the differentiation process. Here we identify the transcription factor KLF3 as a regulator of epidermal differentiation.

View Article and Find Full Text PDF

Maintenance of high-turnover tissues such as the epidermis requires a balance between stem cell proliferation and differentiation. The molecular mechanisms governing this process are an area of investigation. Here we show that HNRNPK, a multifunctional protein, is necessary to prevent premature differentiation and sustains the proliferative capacity of epidermal stem and progenitor cells.

View Article and Find Full Text PDF

Stem cell therapy in heart disease is challenged by mis-injection, poor survival, and low cell retention. Here, we describe a biocompatible multifunctional silica-iron oxide nanoparticle to help solve these issues. The nanoparticles were made via an in situ growth of FeO nanoparticles on both the external surfaces and pore walls of mesocellular foam silica nanoparticles.

View Article and Find Full Text PDF

Silicon carbide has been shown to be biocompatible and is used as a coating material for implanted medical devices to prevent biofilms. Silicon carbide nanomaterials are also promising in cell tracking due to their stable and strong luminescence, but more comprehensive studies of this material on the nanoscale are needed. Here, we studied the toxicity of silicon carbide nanomaterials on human mesenchymal stem cells in terms of metabolism, viability, adhesion, proliferation, migration, oxidative stress, and differentiation ability.

View Article and Find Full Text PDF

Adult stem and progenitor cells are critical for replenishing lost tissue due to injury or normal turnover. How these cells maintain self-renewal and sustain the tissue they populate are areas of active investigation. Here, we show that the cohesin complex, which has previously been implicated in regulating chromosome segregation and gene expression, is necessary to promote epidermal stem and progenitor cell self-renewal through cell-autonomous mechanisms.

View Article and Find Full Text PDF

Darier disease (DD) is a genetic skin disease that is associated with mutations in the ATP2A2 gene encoding the type 2 sarco/endoplasmic reticulum (ER) Ca - ATPase (SERCA2). Mutations of this gene result in alterations of calcium homoeostasis, abnormal epidermal adhesion and dyskeratosis. Silencing of ATP2A2 in monolayer cell culture of keratinocytes reduces desmoplakin expression at the borders of cells and impacts cell adhesion.

View Article and Find Full Text PDF

In this issue of Cell Stem Cell, Rinaldi et al. (2016) find an unexpected role for the de novo DNA methyltransferases Dnmt3a and Dnmt3b in the regulation of enhancers. Their findings provide new insight into how regulation of enhancer activity through DNA methylation can have dramatic consequences on epidermal stem cell fate decisions.

View Article and Find Full Text PDF

Type 1 interferons (IFNs) promote inflammation in the skin but the mechanisms responsible for inducing these cytokines are not well understood. We found that IFN-β was abundantly produced by epidermal keratinocytes (KCs) in psoriasis and during wound repair. KC IFN-β production depended on stimulation of mitochondrial antiviral-signaling protein (MAVS) by the antimicrobial peptide LL37 and double stranded-RNA released from necrotic cells.

View Article and Find Full Text PDF

Epidermal stem and progenitor cells exist within the basal layer of the epidermis and serve to replenish the loss of differentiated cells because of normal turnover or injury. Current efforts have focused on elucidating the transcriptional regulation of epidermal stem cell self-renewal and differentiation. However, recent studies have pointed to an emerging and prominent role for post-transcriptional regulation of epidermal cell fate decisions.

View Article and Find Full Text PDF

Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down.

View Article and Find Full Text PDF

In adult tissues, stem and progenitor cells must balance proliferation and differentiation to maintain homeostasis. How this is done is unclear. Here, we show that the DEAD box RNA helicase, DDX6 is necessary for maintaining adult progenitor cell function.

View Article and Find Full Text PDF