Publications by authors named "George Santangelo"

Purpose: In response to the decades-long decrease in U.S. clinician-scientists, the National Institutes of Health (NIH) and the Albert and Mary Lasker Foundation launched the Lasker Clinical Research Scholars Program in academic year 2011 to 2012.

View Article and Find Full Text PDF

Importance: Current reports suggest that the surgeon-scientist phenotype is significantly threatened. However, a significant increase in the proportion of surgeons in the workforce funded by the National Institutes of Health (NIH) from 2010 (0.5%) to 2020 (0.

View Article and Find Full Text PDF

Background: Recent literature suggests that the future of surgeon-scientists in the US has been threatened for the past several decades. However, we documented an overall increase in NIH funding for surgeon-scientists, as well as the number of NIH-funded surgeons, from 2010 to 2020.

Study Design: NIH-funded principal investigators (PIs) were identified for June 2010 and June 2020 using the NIH internal data platform iSearch Grants (version 2.

View Article and Find Full Text PDF

Despite efforts to promote diversity in the biomedical workforce, there remains a lower rate of funding of National Institutes of Health R01 applications submitted by African-American/black (AA/B) scientists relative to white scientists. To identify underlying causes of this funding gap, we analyzed six stages of the application process from 2011 to 2015 and found that disparate outcomes arise at three of the six: decision to discuss, impact score assignment, and a previously unstudied stage, topic choice. Notably, AA/B applicants tend to propose research on topics with lower award rates.

View Article and Find Full Text PDF

Citation data have remained hidden behind proprietary, restrictive licensing agreements, which raises barriers to entry for analysts wishing to use the data, increases the expense of performing large-scale analyses, and reduces the robustness and reproducibility of the conclusions. For the past several years, the National Institutes of Health (NIH) Office of Portfolio Analysis (OPA) has been aggregating and enhancing citation data that can be shared publicly. Here, we describe the NIH Open Citation Collection (NIH-OCC), a public access database for biomedical research that is made freely available to the community.

View Article and Find Full Text PDF

Fundamental scientific advances can take decades to translate into improvements in human health. Shortening this interval would increase the rate at which scientific discoveries lead to successful treatment of human disease. One way to accomplish this would be to identify which advances in knowledge are most likely to translate into clinical research.

View Article and Find Full Text PDF

Given the vast scale of the modern scientific enterprise, it can be difficult for scientists to make judgments about the work of others through careful analysis of the entirety of the relevant literature. This has led to a reliance on metrics that are mathematically flawed and insufficiently diverse to account for the variety of ways in which investigators contribute to scientific progress. An urgent, critical first step in solving this problem is replacing the Journal Impact Factor with an article-level alternative.

View Article and Find Full Text PDF

Despite their recognized limitations, bibliometric assessments of scientific productivity have been widely adopted. We describe here an improved method to quantify the influence of a research article by making novel use of its co-citation network to field-normalize the number of citations it has received. Article citation rates are divided by an expected citation rate that is derived from performance of articles in the same field and benchmarked to a peer comparison group.

View Article and Find Full Text PDF

All eukaryotic cells alter their transcriptional program in response to the sugar glucose. In Saccharomyces cerevisiae, the best-studied downstream effector of this response is the glucose-regulated repressor Mig1. We show here that nuclear pore complexes also contribute to glucose-regulated gene expression.

View Article and Find Full Text PDF

Proteins possessing a C-terminal CaaX motif, such as the Ras GTPases, undergo extensive post-translational modification that includes attachment of an isoprenoid lipid, proteolytic processing and carboxylmethylation. Inhibition of the enzymes involved in these processes is considered a cancer-therapeutic strategy. We previously identified nine in vitro inhibitors of the yeast CaaX protease Rce1p in a chemical library screen (Manandhar et al.

View Article and Find Full Text PDF

The CaaX tetrapeptide motif typically directs three sequential posttranslational modifications, namely, isoprenylation, proteolysis, and carboxyl methylation. In all eukaryotic systems evaluated to date, two CaaX proteases (Rce1 and Ste24/Afc1) have been identified. Although the Trypanosoma brucei genome also encodes two putative CaaX proteases, the lack of detectable T.

View Article and Find Full Text PDF

The alpha-helical coiled coil is a simple but widespread motif that is an integral feature of many cellular structures. Coiled coils allow monomeric building blocks to form complex assemblages that can serve as molecular motors and springs. Previous parametrically delimited analyses of the distribution of coiled coils in the genomes of diverse organisms, including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Homo sapiens, have identified conserved biological processes that make use of this versatile motif.

View Article and Find Full Text PDF

Regulation of gene transcription is a key feature of developmental, homeostatic, and oncogenic processes. The reverse recruitment model of transcriptional control postulates that eukaryotic genes become active by moving to contact transcription factories at nuclear substructures; our previous work showed that at least some of these factories are tethered to nuclear pores. We demonstrate here that the nuclear periphery is the site of key events in the regulation of glucose-repressed genes, which together compose one-sixth of the Saccharomyces cerevisiae genome.

View Article and Find Full Text PDF

Transcriptomic reprogramming is critical to the coordination between growth and cell cycle progression in response to changing extracellular conditions. In Saccharomyces cerevisiae, the transcription factor Gcr1 contributes to this coordination by supporting maximum expression of G1 cyclins in addition to regulating both glucose-induced and glucose-repressed genes. We report here the comprehensive genome-wide expression profiling of gcr1Delta cells.

View Article and Find Full Text PDF

Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins.

View Article and Find Full Text PDF

The recruitment model for gene activation presumes that DNA is a platform on which the requisite components of the transcriptional machinery are assembled. In contrast to this idea, we show here that Rap1/Gcr1/Gcr2 transcriptional activation in yeast cells occurs through a large anchored protein platform, the Nup84 nuclear pore subcomplex. Surprisingly, Nup84 and associated subcomplex components activate transcription themselves in vivo when fused to a heterologous DNA-binding domain.

View Article and Find Full Text PDF

Growth of Saccharomyces cerevisiae requires coordination of cell cycle events (e.g., new cell wall deposition) with constitutive functions like energy generation and duplication of protein mass.

View Article and Find Full Text PDF