Publications by authors named "George S Yang"

Article Synopsis
  • The study focuses on developing small promoters that mimic natural gene expression patterns for improved gene therapy, potentially enhancing safety and effectiveness by targeting specific cells.
  • Research involved modifying existing human DNA regulatory elements (MiniPs) and testing them using a viral system in mice to evaluate their ability to selectively express in neural tissues.
  • Results indicated a high success rate, with 84% of the MiniPs successfully replicating expected expression patterns, which could lead to significant advancements in gene therapy approaches and research.
View Article and Find Full Text PDF

The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most neurodegenerative disorder leading to dementia. Neuritic plaque formation in brains is a hallmark of AD pathogenesis. Amyloid beta protein (Abeta) is the central component of neuritic plaques.

View Article and Find Full Text PDF

Background: Expansion of polyglutamine-encoding CAG trinucleotide repeats has been identified as the pathogenic mutation in nine different genes associated with neurodegenerative disorders. The majority of individuals clinically diagnosed with spinocerebellar ataxia do not have mutations within known disease genes, and it is likely that additional ataxias or Huntington disease-like disorders will be found to be caused by this common mutational mechanism. We set out to determine the length distributions of CAG-polyglutamine tracts for the entire human genome in a set of healthy individuals in order to characterize the nature of polyglutamine repeat length variation across the human genome, to establish the background against which pathogenic repeat expansions can be detected, and to prioritize candidate genes for repeat expansion disorders.

View Article and Find Full Text PDF

As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.

View Article and Find Full Text PDF

Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X.

View Article and Find Full Text PDF

We have identified longevity-associated genes in a long-lived Caenorhabditis elegans daf-2 (insulin/IGF receptor) mutant using serial analysis of gene expression (SAGE), a method that efficiently quantifies large numbers of mRNA transcripts by sequencing short tags. Reduction of daf-2 signaling in these mutant worms leads to a doubling in mean lifespan. We prepared C.

View Article and Find Full Text PDF

Background: Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported.

Results: Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries.

View Article and Find Full Text PDF

We sequenced the 29,751-base genome of the severe acute respiratory syndrome (SARS)-associated coronavirus known as the Tor2 isolate. The genome sequence reveals that this coronavirus is only moderately related to other known coronaviruses, including two human coronaviruses, HCoV-OC43 and HCoV-229E. Phylogenetic analysis of the predicted viral proteins indicates that the virus does not closely resemble any of the three previously known groups of coronaviruses.

View Article and Find Full Text PDF

We describe an efficient high-throughput method for accurate DNA sequencing of entire cDNA clones. Developed as part of our involvement in the Mammalian Gene Collection full-length cDNA sequencing initiative, the method has been used and refined in our laboratory since September 2000. Amenable to large scale projects, we have used the method to generate >7 Mb of accurate sequence from 3695 candidate full-length cDNAs.

View Article and Find Full Text PDF