Detection of viable viruses in the air is critical in order to determine the level of risk associated with the airborne diffusion of viruses. Different methods have been developed for the isolation, purification, and detection of viable airborne viruses, but they require an extensive processing time and often present limitations including low physical efficiency (i.e.
View Article and Find Full Text PDFCryptosporidium, an intestinal protozoan pathogen, is one of the leading causes of death in children and diarrhea in healthy adults. Detection of Cryptosporidium has become a high priority to prevent potential outbreaks. In this paper, a simple, easy to fabricate, and cost-effective on-chip-based electrochemical biosensor has been developed for the sensitive and label-free detection of Cryptosporidium oocysts in water samples.
View Article and Find Full Text PDFCryptosporidium, a protozoan pathogen, is a leading threat to public health and the economy. Herein, we report the development of a portable, colorimetric biosensing platform for the sensitive, selective and label/PCR-free detection of Cryptosporidium RNA using oligonucleotides modified gold nanoparticles (AuNPs). A pair of specific thiolated oligonucleotides, complementary to adjacent sequences on Cryptosporidium RNA, were attached to AuNPs.
View Article and Find Full Text PDFSeveral studies have been performed on the integration of biosensors into digital microfluidics (DMF). Despite the general success in their detection capabilities, there are still two challenges associated with the integration of biosensors into DMF: (1) complete removal of the droplet containing the analytes from the sensing surface; and (2) biochemical regeneration of the biosensor involving detaching the target analyte from the receptor after each round of sensing. The latter is case dependent and the solution can vary from one application to another.
View Article and Find Full Text PDF