We have recently introduced a new semiconductor laser design which is based on an extreme, 99%, reduction of the laser mode absorption losses. In previous reports, we showed that this was achieved by a laser mode design which confines the great majority of the modal energy (> 99%) in a low-loss Silicon guiding layer rather than in highly-doped, thus lossy, III-V p[Formula: see text] and n[Formula: see text] layers, which is the case with traditional III-V lasers. The resulting reduced electron-field interaction was shown to lead to a commensurate reduction of the spontaneous emission rate by the excited conduction band electrons into the laser mode and thus to a reduction of the frequency noise spectral density of the laser field often characterized by the Schawlow-Townes linewidth.
View Article and Find Full Text PDFIn this paper, we propose and demonstrate a solution to the problem of coherence degradation and collapse caused by the back reflection of laser power into the laser resonator. The problem is most onerous in semiconductor lasers (SCLs), which are normally coupled to optical fibers, and results in the fact that practically every commercial SCL has appended to it a Faraday-effect isolator that blocks most of the reflected optical power preventing it from entering the laser resonator. The isolator assembly is many times greater in volume and cost than the SCL itself.
View Article and Find Full Text PDFWe experimentally demonstrate the use of a high-coherence hybrid silicon (Si)/III-V semiconductor laser as the light source for a transmitter generating 20 Gbaud 16- and 64- quadrature amplitude modulated (QAM) data signals over an 80 km single-mode fiber (SMF) link. The hybrid Si/III-V laser has a measured Schawlow-Townes linewidth of ${\sim}{10}\;{\rm kHz}$∼10kHz, which is achieved by storing modal optical energy in low-loss Si, rather than the relatively lossy III-V materials. We measure a received bit error rate (BER) of ${4.
View Article and Find Full Text PDFFew laser systems allow access to the light-emitter interaction as versatile and direct as that afforded by semiconductor lasers. Such a level of access can be exploited for the control of the coherence and dynamic properties of the laser. Here, we demonstrate, theoretically and experimentally, the reduction of the quantum phase noise of a semiconductor laser through the direct control of the spontaneous emission into the laser mode, exercised via the precise and deterministic manipulation of the optical mode's spatial field distribution.
View Article and Find Full Text PDFIn a high power fiber amplifier, a frequency-chirped seed interrupts the coherent interaction between the laser and Stokes waves, raising the threshold for stimulated Brillouin scattering (SBS). Moving the external mirror of a vertical cavity surface-emitting diode laser 0.2 μm in 10 μs can yield a frequency chirp of 5×10 Hz/s at a nearly constant output power.
View Article and Find Full Text PDFThe bandwidth and performance of optical phase-lock loops (OPLLs) using single-section semiconductor lasers (SCLs) are severely limited by the nonuniform frequency modulation response of the lasers. It is demonstrated that this restriction is eliminated by the sideband locking of a single-section distributed-feedback SCL to a master laser in a heterodyne OPLL, thus enabling a delay-limited loop bandwidth. The lineshape of the phase-locked SCL output is characterized using a delayed self-heterodyne measurement.
View Article and Find Full Text PDFWe demonstrate the generation of wideband frequency sweeps using a semiconductor laser in an optoelectronic feedback loop. The rate and shape of the optical frequency sweep is locked to and determined by the frequency of a reference electronic signal, leading to an agile, high coherence swept-frequency source for laser ranging and 3-D imaging applications. Using a reference signal of constant frequency, a transform-limited linear sweep of 100 GHz in 1 ms is achieved, and real-time ranging with a spatial resolution of 1.
View Article and Find Full Text PDFUsing heterodyne Optical Phase-Locked Loops (OPLLs), two 1W high power 1550 nm master-oscillator-power-amplifier (MOPA) semiconductor lasers operating as current controlled oscillators are phase-locked to a 1 mW reference laser. The signals of the two MOPAs are then coherently combined and their mutual coherence is studied. In each OPLL, the acquisition range is increased to +/-1.
View Article and Find Full Text PDFWe have experimentally demonstrated current-injection optical phase-lock loops (OPLLs) based on commercial single-section semiconductor distributed-feedback (DFB) lasers. Using two parallel OPLLs, we have obtained 87% efficient coherent power combining of the two DFB lasers. The rms differential phase error between the two lasers is about 30 degrees .
View Article and Find Full Text PDF