Publications by authors named "George R Tonn"

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) regulates inflammation, cytokine release, and necroptotic cell death and is implicated in pathogenic cellular pathways in amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis. Inhibition of RIPK1 activity protects against inflammation and cell death in multiple animal models. DNL104 is a selective, brain-penetrant inhibitor of RIPK1 phosphorylation in clinical development for AD and ALS.

View Article and Find Full Text PDF

This report summarizes the identification and synthesis of novel LpxC inhibitors aided by computational methods that leveraged numerous crystal structures. This effort led to the identification of oxazolidinone and isoxazoline inhibitors with potent in vitro activity against P. aeruginosa and other Gram-negative bacteria.

View Article and Find Full Text PDF

As a follow-up to the GPR40 agonist AMG 837, which was evaluated in clinical trials for the treatment of type II diabetes, further optimization led to the discovery of AM-3189 (13k). AM-3189 is representative of a new class of compounds with minimal CNS penetration, superior pharmacokinetic properties and in vivo efficacy comparable to AMG 837.

View Article and Find Full Text PDF

GPR40 (FFA1 and FFAR1) has gained significant interest as a target for the treatment of type 2 diabetes. TAK-875 (1), a GPR40 agonist, lowered hemoglobin A1c (HbA1c) and lowered both postprandial and fasting blood glucose levels in type 2 diabetic patients in phase II clinical trials. We optimized phenylpropanoic acid derivatives as GPR40 agonists and identified AMG 837 (2) as a clinical candidate.

View Article and Find Full Text PDF

CYP3A4-mediated biotransformation of (R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-N-(pyridin-3-ylmethyl)-2-(4-(trifluoromethoxy)phenyl)acetamide (AMG 487) was previously shown to generate an inhibitory metabolite linked to dose- and time-dependent pharmacokinetics in humans. Although in vitro activity loss assays failed to demonstrate CYP3A4 time-dependent inhibition (TDI) with AMG 487, its M2 phenol metabolite readily produced TDI when remaining activity was assessed using either midazolam or testosterone (K(I) = 0.73-0.

View Article and Find Full Text PDF

Agonists of GPR40 (FFA1) have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to understand the preclinical pharmacological properties of AMG 837.

View Article and Find Full Text PDF

The 2-methyl substituted indole, 2MI [2-(4-(4-(2,4-dichlorophenylsulfonamido)-2-methyl-1H-indol-5-yloxy)-3-methoxyphenyl)acetic acid] is a potent dual inhibitor of 1) chemoattractant receptor-homologous molecule expressed on T-helper type-2 cells and 2) d-prostanoid receptor. During evaluation as a potential treatment for asthma and allergic rhinitis, 2MI was identified as a mechanism-based inactivator of CYP3A4 in vitro. The inactivation was shown to be irreversible by dialysis and accompanied by an NADPH-dependent increase in 2MI covalent binding to a 55- to 60-kDa microsomal protein, consistent with irreversible binding to CYP3A4.

View Article and Find Full Text PDF

Time-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes caused by new molecular entities (NMEs) is of concern because such compounds can be responsible for clinically relevant drug-drug interactions (DDI). Although the biochemistry underlying mechanism-based inactivation (MBI) of P450 enzymes has been generally understood for several years, significant advances have been made only in the past few years regarding how in vitro time-dependent inhibition data can be used to understand and predict clinical DDI. In this article, a team of scientists from 16 pharmaceutical research organizations that are member companies of the Pharmaceutical Research and Manufacturers of America offer a discussion of the phenomenon of TDI with emphasis on the laboratory methods used in its measurement.

View Article and Find Full Text PDF

(R)-N-{1-[3-(4-Ethoxy-phenyl)-4-oxo-3,4-dihydro-pyrido[2,3-d]-pyrimidin-2-yl]-ethyl}-N-pyridin-3-yl-methyl-2-(4-trifluoromethoxyphenyl)-acetamide (AMG 487) is a potent and selective orally bioavailable chemokine (C-X-C motif) receptor 3 (CXCR3) antagonist that displays dose- and time-dependent pharmacokinetics in human subjects after multiple oral dosing. Although AMG 487 exhibited linear pharmacokinetics on both days 1 and 7 at the 25-mg dose, dose- and time-dependent kinetics were evident at the two higher doses. Nonlinear kinetics were more pronounced after multiple dosing.

View Article and Find Full Text PDF

Novel non-nucleoside inhibitors of the HCV RNA polymerase (NS5b) with sub-micromolar biochemical potency have been identified which are selective for the inhibition of HCV NS5b over other polymerases. The structures of the complexes formed between several of these inhibitors and HCV NS5b were determined by X-ray crystallography, and the inhibitors were found to bind in an allosteric binding site separate from the active site. Structure-activity relationships and structural studies have identified the mechanism of action for compounds in this series, several of which possess drug-like properties, as unique, reversible, covalent inhibitors of HCV NS5b.

View Article and Find Full Text PDF