Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion.
View Article and Find Full Text PDFThe rapid manufacture of complex three-dimensional micro-scale components has eluded researchers for decades. Several additive manufacturing options have been limited by either speed or the ability to fabricate true three-dimensional structures. Projection micro-stereolithography (PμSL) is a low cost, high throughput additive fabrication technique capable of generating three-dimensional microstructures in a bottom-up, layer by layer fashion.
View Article and Find Full Text PDFPesticides are toxic substances and may cause unintentional harm if improperly used. The ubiquitous nature of pesticides, with frequent use in agriculture and the household, and the potential for harm that pesticides pose to non-target organisms such as wildlife, humans, and pets, demonstrate the need for rapid and effective detection and identification of these compounds. In this study, single particle aerosol mass spectrometry (SPAMS) was used to rapidly detect compounds from four classes of pesticides commonly used in agricultural and household applications.
View Article and Find Full Text PDFSolid-phase microextraction (SPME) was applied, in conjunction with gas chromatography-mass spectrometry, to the analysis of volatile organic compounds (VOCs) in human breath samples without requiring exhaled breath condensate collection. A new procedure, exhaled breath vapor (EBV) collection, involving the active sampling and preconcentration of a breath sample with a SPME fiber fitted inside a modified commercial breath-collection device, the RTube, is described. Immediately after sample collection, compounds are desorbed from the SPME fiber at 250 degrees C in the GC-MS injector.
View Article and Find Full Text PDFIn this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles.
View Article and Find Full Text PDFActual or surrogate chemical, biological, radiological, nuclear, and explosive materials and illicit drug precursors can be rapidly detected and identified when in aerosol form by a Single-Particle Aerosol Mass Spectrometry (SPAMS) system. This entails not only the sampling of such particles but also the physical analysis and subsequent data analysis leading to a highly reliable alarm state. SPAMS hardware is briefly reviewed.
View Article and Find Full Text PDFSingle over-the-counter medication tablets were analyzed in real time using Single Particle Aerosol Mass Spectrometry (SPAMS). Dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles dislodged from a single tablet without destroying the shape or markings of each tablet. The solid tablet was placed in a modified-top glass vial and shaken to dislodge and introduce micrometer-sized particles into the SPAMS system.
View Article and Find Full Text PDFSingle-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.
View Article and Find Full Text PDFThe application of single-particle aerosol mass spectrometry (SPAMS) to the real-time detection of micrometer-sized single particles of high explosives is described. Dual-polarity time-of-flight mass spectra from 1000 single particles each of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN), as well as those of complex explosives, Composition B, Semtex 1A, and Semtex 1H, were obtained over a range of desorption/ionization laser fluences between 0.50 and 8.
View Article and Find Full Text PDFThe surface-mediated reactions of 2-chlorophenol, 1,2-dichlorobenzene, and chlorobenzene were studied using CuO/ SiO2 as a fly ash surrogate. These compounds served as model precursors that have been implicated in the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). With FTIR, we determined that reactions of the model precursors with a substrate composed of CuO dispersed on silica result in the formation of a mixture of surface-bound phenolate and carboxylate partial oxidation products from 200 to 500 degrees C.
View Article and Find Full Text PDFThe reaction of 2-chlorophenol on Cu(II)O at 375 degrees C is studied using X-ray absorption near edge structure (XANES) spectroscopy. A mixture of copper(II) oxide and silica is prepared to serve as a surrogate for fly ash in combustion systems. 2-Chlorophenol is utilized as a model precursor for formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F).
View Article and Find Full Text PDF