Publications by authors named "George R A Hancock"

Camouflage is a widespread and well-studied anti-predator strategy, yet identifying which patterns provide optimal protection in any given scenario remains challenging. Besides the virtually limitless combinations of colours and patterns available to prey, selection for camouflage strategies will depend on complex interactions between prey appearance, background properties and predator traits, across repeated encounters between co-evolving predators and prey. Experiments in artificial evolution, pairing psychophysics detection tasks with genetic algorithms, offer a promising way to tackle this complexity, but sophisticated genetic algorithms have so far been restricted to screen-based experiments.

View Article and Find Full Text PDF

The nests of ground-nesting birds rely heavily on camouflage for their survival, and predation risk, often linked to ecological changes from human activity, is a major source of mortality. Numerous ground-nesting bird populations are in decline, so understanding the effects of camouflage on their nesting behavior is relevant to their conservation concerns. Habitat three-dimensional (3D) geometry, together with predator visual abilities, viewing distance, and viewing angle, determine whether a nest is either visible, occluded, or too far away to detect.

View Article and Find Full Text PDF

Camouflage research has long shaped our understanding of evolution by natural selection, and elucidating the mechanisms by which camouflage operates remains a key question in visual ecology. However, the vast diversity of color patterns found in animals and their backgrounds, combined with the scope for complex interactions with receiver vision, presents a fundamental challenge for investigating optimal camouflage strategies. Genetic algorithms (GAs) have provided a potential method for accounting for these interactions, but with limited accessibility.

View Article and Find Full Text PDF