Introduction: Genome-wide association studies (GWAS) in late onset Alzheimer's disease (LOAD) provide lists of individual genetic determinants. However, GWAS do not capture the synergistic effects among multiple genetic variants and lack good specificity.
Methods: We applied tree-based machine learning algorithms (MLs) to discriminate LOAD (>700 individuals) and age-matched unaffected subjects in UK Biobank with single nucleotide variants (SNVs) from Alzheimer's disease (AD) studies, obtaining specific genomic profiles with the prioritized SNVs.