Publications by authors named "George P Studzinski"

Vitamin D, a key nutrient/prohormone classically associated with skeletal health, is also an important immunomodulator, with pleotropic effects on innate and adaptive immune cells. Outcomes of several chronic, autoimmune, and infectious diseases are linked to vitamin D. Emergent correlations of vitamin D insufficiency with coronavirus-induced disease 2019 (COVID-19) severity, alongside empirical and clinical evidence of immunoregulation by vitamin D in other pulmonary diseases, have prompted proposals of vitamin D supplementation to curb the COVID-19 public health toll.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) has increasing worldwide incidence but when unresectable lacks curative options. Treatment with a kinase inhibitor Sorafenib (Sf), while initially effective, results in only short increases in patient survival, thus there is a need for improved treatment regimens. Numerous treatment regimens have been explored wherein Sf is combined with other agents, such as non-toxic botanicals like Curcumin or Silibinin.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and it is the third leading cause of global cancer mortality. Sorafenib (Sf) is the first oral multi-kinase inhibitor approved for systemic treatment of advanced HCC, and can prolong survival, although only for three months longer than placebo treated patients. Preclinical studies showed that active forms of vitamin D can induce cell differentiation and regulate cell survival in several cell types, and epidemiological data link vitamin D insufficiency to an increased risk of neoplastic diseases, suggesting a potentially important role of vitamin D in cancer therapy.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) has a poor prognosis and requires new approaches for treatment. We have reported that a combination of vitamin D-based cell differentiation agents (doxercalciferol/carnosic acid [D2/CA]) added following the cytotoxic drug arabinocytosine (AraC) increases AML cell death (CD), a model for improved therapy of this disease. Because AraC-induced CD is known to involve reactive oxygen species (ROS) generation, here we investigated if the modulation of cellular REDOX status plays a role in the enhancement of cell death (ECD) by D2/CA.

View Article and Find Full Text PDF

Numerous clinical studies of vitamin D, its derivatives or analogs, have failed to clearly demonstrate sustained benefits when used for the treatment of human malignant diseases. However, given the strong preclinical evidence of anti-neoplastic activity and the epidemiological associations suggesting that vitamin D compounds may have a place in cancer therapy, attempts are continuing to devise new approaches to their therapeutic use. This laboratory has developed a strategy to enhance the effectiveness of the currently standard therapy of Acute Myeloid Leukemia (AML) by the immediate addition of the vitamin D2 analog Doxercalciferol combined with the plant polyphenol-derived Carnosic acid to AML cells previously treated with Cytarabine (AraC).

View Article and Find Full Text PDF

Cytarabine (AraC) has been the primary treatment agent for acute myeloid leukemia (AML) in the past 30 years, but the precise mechanism of its action is not completely known. Here we assessed the role of ERK5 in AraC-induced cell death in AML cell lines HL60 and U937 using ERK5 inhibitors BIX02189 and XMD8-92. We report that inhibition of MEK5/ERK5 activity reduces AraC-induced cell death, DNA damage, the upregulated DNA damage biomarkers, and produced G2 phase cell cycle arrest.

View Article and Find Full Text PDF

Differentiation therapy can supplement the therapy of APL, but other subtypes of AML are treated principally with cytotoxic agents, with few lasting remissions. While the induction of monocyte followed by macrophage differentiation by vitamin D derivatives (VDDs) is dramatic in cultured AML cells of all subtypes, attempts to translate this to the clinic have not been effective. Thus, better understanding of the mechanisms underlying VDD-induced differentiation may improve this approach.

View Article and Find Full Text PDF

Vitamin D has so far not fulfilled its early promise as an antineoplastic agent, in spite of compelling in vitro data. With the aim of bringing vitamin D or its derivatives (VDDs) effectively to the clinic, we developed a two-pronged approach. First, by adding the plant-derived Carnosic Acid (CA) to a vitamin D2 derivative Doxercalciferol we increased its differentiation potency without increasing it hypercalcemic properties.

View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) has grave prognosis due to aggressive nature of the disease, the toxicity of standard treatment, and overall low cure rates. We recently showed that AML cells in established culture treated with Cytarabine (AraC) and a differentiation agent combination show enhancement of AraC cytotoxicity. Here we elucidate molecular changes which underlie this observation with focus on AML blasts in primary culture.

View Article and Find Full Text PDF

The role of vitamin D as a treatment option for neoplastic diseases, once considered to have a bright future, remains controversial. The preclinical studies discussed herein show compelling evidence that Vitamin D Derivatives (VDDs) can convert some cancer and leukemia cells to a benign phenotype, by differentiation/maturation, cell cycle arrest, or induction of apoptosis. Furthermore, there is considerable, though still evolving, knowledge of the molecular mechanisms underlying these changes.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by extremely heterogeneous molecular and biologic abnormalities that hamper the development of effective targeted treatment modalities. While AML cells are highly sensitive to cytotoxic Ca2+ overload, the feasibility of Ca2+- targeted therapy of this disease remains unclear. Here, we show that apoptotic response of AML cells to the synergistically acting polyphenols curcumin (CUR) and carnosic acid (CA), combined at low, non-cytotoxic doses of each compound was mediated solely by disruption of cellular Ca2+ homeostasis.

View Article and Find Full Text PDF

The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.

View Article and Find Full Text PDF

Arabinocytosine (AraC, also known as cytarabine) is one of the mainstays of AML therapy, but like other DNA damaging therapeutic agents it is rarely curative by itself. There is an emerging realization that the therapeutic outcomes may be improved by combining AraC with other compounds. Here we report that the addition of a differentiating agent combination immediately following AraC damage to AML blasts, selectively increases the cell kill.

View Article and Find Full Text PDF

The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT.

View Article and Find Full Text PDF

It is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of 1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic malignancies.

View Article and Find Full Text PDF

Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation.

View Article and Find Full Text PDF

Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy.

View Article and Find Full Text PDF

Background: Vitamin D insufficiency is associated with broad-ranging human disease sequelae such as bone disease, cancer, cardiovascular disease, allergy, autoimmune disorders, diabetes, and infectious diseases. Disease risk and severity of a large proportion of the nonskeletal disorders heavily involve the cytotoxic cluster of differentiation (CD) 8 T lymphocyte (CTL) arm of cellular adaptive immunity. Considering the importance of vitamin D in CTL-dependent diseases, there is a critical need for systematic in-depth explorations into the role of vitamin D deficiency in generation and maintenance of CTL immunity during infections and vaccinations.

View Article and Find Full Text PDF

Vitamin D derivatives, including its physiological form 1α,25(OH)2 vitamin D3 (1,25D), have anti-tumor actions demonstrated in cell culture and confirmatory epidemiological associations are frequently reported. However, their promise for use in the cancer clinic is still incompletely fulfilled, suggesting that a better understanding of the molecular events initiated by these compounds is needed for therapeutic advances. While ERK1/2 has been intensely investigated and is known to transmit signals for cell survival, growth, and differentiation, the role of other MAPK pathways has been studied sporadically.

View Article and Find Full Text PDF

Protein tyrosine kinases (PTKs) are enzymes that transfer phosphate groups to tyrosine residues on protein substrates. Phosphorylation of proteins causes changes in their function and/or enzymatic activity resulting in specific biological responses. There are two classes of PTKs: the transmembrane receptor PTKs and the cytoplasmic non-receptor PTKs (NRTKs).

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPKs) are important transducers of external signals for cell growth, survival, and other cellular responses including cell differentiation. Several MAPK cascades are known with the MEK1/2-ERK1/2, JNK, and p38MAPKs receiving most attention, but the role of MEK5-ERK5 in intracellular signaling deserves more scrutiny, as this pathway transmits signals that can complement ERK/2 signaling. We hypothesized that the ERK5 pathway plays a role in the control of monocytic differentiation, which is disturbed in myeloid leukemia.

View Article and Find Full Text PDF

Caspase function is known to be essential for cell death by apoptosis, but it is now increasingly recognized that these proteases also play important roles in other cellular events. Here we report for the first time that inhibition of cellular caspase activity can induce differentiation of AML blasts, and can enhance vitamin D-induced cell differentiation of these cells. This was studied in blasts obtained from nine patients with AML and one patient with CML by ex vivo culture in the presence of Q-VD-OPh (QVD), a pan caspase inhibitor.

View Article and Find Full Text PDF

In addition to its traditional role in the regulation of calcium homeostasis and bone metabolism, vitamin D also exhibits immunomodulatory, anti-proliferative and cancer preventive activities. Molecular mechanisms that confer the chemo-preventive properties to vitamin D are poorly understood. We previously reported that constitutive phosphorylation of histone H2AX on Ser139 (γH2AX) and activation of ATM (Ser1981 phosphorylation), seen in untreated normal or tumor cells predominantly in S phase of the cell cycle, is to a large extent indicative of DNA replication stress occurring as a result of persistent DNA damage caused by endogenous oxidants, by-products of oxidative metabolism.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session40jig1jk811lq1tl9vnriq0p1bffoivq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once