Background: Excessive tool-tissue interaction forces often result in tissue damage and intraoperative complications, while insufficient forces prevent the completion of the task. This review sought to explore the tool-tissue interaction forces exerted by instruments during surgery across different specialities, tissues, manoeuvres and experience levels.
Materials & Methods: A PRISMA-guided systematic review was carried out using Embase, Medline and Web of Science databases.
Minimally Invasive Surgery (MIS) imposes a trade-off between non-invasive access and surgical capability. Treatment of early gastric cancers over 20 mm in diameter can be achieved by performing Endoscopic Submucosal Dissection (ESD) with a flexible endoscope; however, this procedure is technically challenging, suffers from extended operation times and requires extensive training. To facilitate the ESD procedure, we have created a deployable cable driven robot that increases the surgical capabilities of the flexible endoscope while attempting to minimize the impact on the access that they offer.
View Article and Find Full Text PDFObjective: Intraoperative palpation is a surgical gesture jeopardized by the lack of haptic feedback which affects robotic minimally invasive surgery. Restoring the force reflection in teleoperated systems may improve both surgeons' performance and procedures' outcome.
Methods: A force-based sensing approach was developed, based on a cable-driven parallel manipulator with anticipated seamless and low-cost integration capabilities in teleoperated robotic surgery.
Soft robotic devices have desirable traits for applications in minimally invasive surgery (MIS), but many interdisciplinary challenges remain unsolved. To understand current technologies, we carried out a keyword search using the Web of Science and Scopus databases, applied inclusion and exclusion criteria, and compared several characteristics of the soft robotic devices for MIS in the resulting articles. There was low diversity in the device designs and a wide-ranging level of detail regarding their capabilities.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2017
Purpose: Improved surgical outcome and patient safety in the operating theatre are constant challenges. We hypothesise that a framework that collects and utilises information -especially perceptually enabled ones-from multiple sources, could help to meet the above goals. This paper presents some core functionalities of a wider low-cost framework under development that allows perceptually enabled interaction within the surgical environment.
View Article and Find Full Text PDFLongitudinal changes in cortical function are known to accompany motor skills learning, and can be detected as an evolution in the activation map. These changes include attenuation in activation in the prefrontal cortex and increased activation in primary and secondary motor regions, the cerebellum and posterior parietal cortex. Despite this, comparatively little is known regarding the impact of the mode or type of training on the speed of activation map plasticity and on longitudinal variation in network architectures.
View Article and Find Full Text PDFThe use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task.
View Article and Find Full Text PDFBackground: Eye-tracking technology has been shown to improve trainee performance in the aircraft industry, radiology, and surgery. The ability to track the point-of-regard of a supervisor and reflect this onto a subjects' laparoscopic screen to aid instruction of a simulated task is attractive, in particular when considering the multilingual make up of modern surgical teams and the development of collaborative surgical techniques. We tried to develop a bespoke interface to project a supervisors' point-of-regard onto a subjects' laparoscopic screen and to investigate whether using the supervisor's eye-gaze could be used as a tool to aid the identification of a target during a surgical-simulated task.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
A gaze-contingent autofocus system using an eye-tracker and liquid lens has been constructed for use with a surgical robot, making it possible to rapidly (within tens of milliseconds) change focus using only eye-control. This paper reports the results of a user test comparing the eye-tracker to a surgical robot's in-built mechanical focusing system. In the clinical environment, this intuitive interface removes the need for an external mechanical control and improves the speed at which surgeons can make decisions, based on the visible features.
View Article and Find Full Text PDFThe success of MIS is coupled with an increasing demand on surgeons' manual dexterity and visuomotor coordination due to the complexity of instrument manipulations. The use of master-slave surgical robots has avoided many of the drawbacks of MIS, but at the same time, has increased the physical separation between the surgeon and the patient. Tissue deformation combined with restricted workspace and visibility of an already cluttered environment can raise critical issues related to surgical precision and safety.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2010
Novel robotic technologies utilised in surgery need assessment for their effects on the user as well as on technical performance. In this paper, the evolution in 'cognitive burden' across visuomotor learning is quantified using a combination of functional near infrared spectroscopy (fNIRS) and graph theory. The results demonstrate escalating costs within the activated cortical network during the intermediate phase of learning which is manifest as an increase in cognitive burden.
View Article and Find Full Text PDFThis paper presents a human-robot interface with perceptual docking to allow for the control of multiple microbots. The aim is to demonstrate that real-time eye tracking can be used for empowering robots with human vision by using knowledge acquired . Several micro-robots can be directly controlled through a combination of manual and eye control.
View Article and Find Full Text PDFThis paper presents an articulated robotic-controlled device to facilitate large-area in vivo tissue imaging and characterization through the integration of miniaturized reflected white light and fluorescence intensity imaging for minimally invasive surgery (MIS). The device is composed of a long, rigid shaft with a robotically controlled distal tip featuring three degrees of in-plane articulation and one degree of rotational freedom. The constraints imposed by the articulated section, coupled with the small footprint available in MIS devices, require a novel optical configuration to ensure effective target illumination and image acquisition.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
June 2010
In robot-assisted procedures, the surgeon's ability can be enhanced by navigation guidance through the use of virtual fixtures or active constraints. This paper presents a real-time modeling scheme for dynamic active constraints with fast and simple mesh adaptation under cardiac deformation and changes in anatomic structure. A smooth tubular pathway is constructed which provides assistance for a flexible hyper-redundant robot to circumnavigate the heart with the aim of undertaking bilateral pulmonary vein isolation as part of a modified maze procedure for the treatment of debilitating arrhythmia and atrial fibrillation.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
June 2010
With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008
The use of master-slave surgical robots for Minimally Invasive Surgery (MIS) has created a physical separation between the surgeon and the patient. Reconnecting the essential visuomotor sensory feedback is important for the safe practice of robotic assisted MIS procedures. This paper introduces a novel gaze contingent framework with real-time haptic feedback by transforming visual sensory information into physical constraints that can interact with the motor sensory channel.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008
The use of focused energy delivery in robotic assisted surgery for atrial fibrillation requires accurate prescription of ablation paths. In this paper, an original framework based on fusing human and machine vision for providing gaze-contigent control in robotic assisted surgery is provided. With the proposed method, binocular eye tracking is used to estimate the 3D fixations of the surgeon, which are further refined by considering the camera geometry and the consistency of image features at reprojected fixations.
View Article and Find Full Text PDFComput Aided Surg
November 2007
Laparoscopic surgery poses many different constraints for the operating surgeon, resulting in a slow uptake of advanced laparoscopic procedures. Traditional approaches to the assessment of surgical performance rely on prior classification of a cohort of surgeons' technical skills for validation, which may introduce subjective bias to the outcome. In this study, Hidden Markov Models (HMMs) are used to learn surgical maneuvers from 11 subjects with mixed abilities.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2008
With the increasing sophistication of surgical robots, the use of motion stabilisation for enhancing the performance of micro-surgical tasks is an actively pursued research topic. The use of mechanical stabilisation devices has certain advantages, in terms of both simplicity and consistency. The technique, however, can complicate the existing surgical workflow and interfere with an already crowded MIS operated cavity.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
April 2007
Laparoscopic surgery poses many different constraints to the operating surgeon, this has resulted in a slow uptake of advanced laparoscopic procedures. Traditional approaches to the assessment of surgical performance rely on prior classification of a cohort of surgeons' technical skills for validation, which may introduce subjective bias to the outcome. In this study, Hidden Markov Models (HMMs) are used to learn surgical maneuvers from 11 subjects with mixed abilities.
View Article and Find Full Text PDFObjective: Recovering tissue depth and deformation during robotically assisted minimally invasive procedures is an important step towards motion compensation, stabilization and co-registration with preoperative data. This work demonstrates that eye gaze derived from binocular eye tracking can be effectively used to recover 3D motion and deformation of the soft tissue.
Methods: A binocular eye-tracking device was integrated into the stereoscopic surgical console.
Med Image Comput Comput Assist Interv
June 2006
In robotically assisted laparoscopic surgery, soft-tissue motion tracking and structure recovery are important for intraoperative surgical guidance, motion compensation and delivering active constraints. In this paper, we present a novel method for feature based motion tracking of deformable soft-tissue surfaces in totally endoscopic coronary artery bypass graft (TECAB) surgery. We combine two feature detectors to recover distinct regions on the epicardial surface for which the sparse 3D surface geometry may be computed using a pre-calibrated stereo laparoscope.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
June 2006
The introduction of surgical robots in Minimally Invasive Surgery (MIS) has allowed enhanced manual dexterity through the use of microprocessor controlled mechanical wrists. Although fully autonomous robots are attractive, both ethical and legal barriers can prohibit their practical use in surgery. The purpose of this paper is to demonstrate that it is possible to use real-time binocular eye tracking for empowering robots with human vision by using knowledge acquired in situ.
View Article and Find Full Text PDF