Cellular senescence is a tightly regulated pathophysiologic process and is caused by replicative exhaustion or external stressors. Since naturally derived bioactive compounds with anti-ageing properties have recently captured scientific interest, we analysed the anti-ageing and antioxidant efficacy of egg extract (CAEE). Its effects on stemness, wound-healing properties, antioxidant defense mechanisms, and DNA damage repair ability of Human Wharton's jelly mesenchymal stem cells (WJ-MSCs) were analysed.
View Article and Find Full Text PDFAffective states are long lasting mood states resulting from an accumulation of experiences. The knowledge of the affective state of animals can significantly help maintain and/or increase animal welfare. The aim of the study was to recognize the affective state of 13 adult rams reared under an intensive system and to further associate their affective state with hierarchy, sociability order and maintenance and social behaviour.
View Article and Find Full Text PDFRecognizing the identity of conspecifics is important for survival and social interactions. In sheep, vocal individuality enhances postnatal recognition and strengthens the mother-offspring bond. Although previous studies report vocal individuality in an early postnatal period (3-15 days of life), scarce information exists on whether individuality occurs at a later postnatal time point.
View Article and Find Full Text PDFThis e research focused on the detection and identification of genetic polymorphisms in exon 7 of the β-casein gene in blood samples from Greek Holstein cows and from local breeds of cattle, such as Vrachykeratiki, Katerinis, and Sykias. For this purpose, DNA was isolated from 780 blood samples obtained from Greek Holstein cows, 86 from three local breeds of cattle, namely Brachyceros, Katerinis, and Sykias, and 14 from Greek buffalo. The desired region of exon 7 was amplified by PCR, resulting in 121 and 251 bp products in bovine and buffalo samples.
View Article and Find Full Text PDFIntroduction: The aim of this study was to determine changes of reactive oxygen species (ROS), serum antioxidant capacity (SAC), oxidative stress index (OSi), and -tocopherol (-T) during the periparturient period in healthy and mastitic cows and to further investigate whether these parameters can be used as a tool for identifying cows at higher risk of developing mastitis.
Material And Methods: Blood samples from 110 dairy cows from two commercial farms were obtained at dry-off, calving, and 30 days post-partum. Healthy cows formed group A (n = 90) and mastitic cows B (n = 20).
Background: The indigenous cattle populations from Greece and Cyprus have decreased to small numbers and are currently at risk of extinction due to socio-economic reasons, geographic isolation and crossbreeding with commercial breeds. This study represents the first comprehensive genome-wide analysis of 10 indigenous cattle populations from continental Greece and the Greek islands, and one from Cyprus, and compares them with 104 international breeds using more than 46,000 single nucleotide polymorphisms (SNPs).
Results: We estimated several parameters of genetic diversity (e.
Background: Sheep's reproductive physiology in temperate latitudes (such as Greece), is characterized by seasonality and is also regulated by photoperiodic exposure. Melatonin is the key hormone involved in this regulation. However, the melatonin secretion and therefore the ewes reproductive activity underlies variation, proposed to be linked with the melatonin receptor subtype 1A (MNTR1A) gene structure.
View Article and Find Full Text PDFToll-like receptors (TLRs) and b-defensins (BD) molecules are group of molecules that recognize various microbial components and play a crucial role in the activation of the innate immune system in vertebrate species. Although TLRs gene expression has been studied in various pig tissues, little is known about their expression in porcine reproductive tract. Concerning b-defensins genes, only BD1, 2 and 3 counterparts have been well studied in pigs' reproductive organs.
View Article and Find Full Text PDFG6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.
View Article and Find Full Text PDFOvine 6-phosphogluconate dehydrogenase (6PGD) is an enzyme of the pentose phosphate pathway, providing the necessary compounds of NADPH for the synthesis of fatty acids. Much of research has been conducted both on enzymatic level and on molecular level. However, to our knowledge, any correlation between enzymatic activity and 6PGD gene expression pattern related to different physiological stages has not been yet reported.
View Article and Find Full Text PDFOvine 6-phosphogluconate dehydrogenase (6PGD), an enzyme of the pentose phosphate pathway, provides the necessary compounds of NADPH for the synthesis of fatty acids. Much of research has been conducted not only on the enzymatic level, but also on molecular level elucidating its cDNA sequence. Herein, we tried to elucidate if any correlation between enzymatic activity and expression of ovine 6PGD gene exists, in respect to two different weights from weaning to 4 months old.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
June 2010
Glucose 6-phosphate dehydrogenase (G6PD) plays an important role in a ruminant's metabolism catalyzing the first committed reaction in the pentose phosphate pathway as it provides necessary compounds of NADPH for the synthesis of fatty acids. The cloning of ovine (Ovis aries) G6PD gene revealed the presence of two cDNA transcripts (oG6PD(A) and oG6PD(B)), with oG6PD(B) being a product of alternative splicing and with no similarity to any other previously reported G6PD transcript. Here, we attempt to study the effect of energy balance in ovine G6PD transcript expression, trying simultaneously to find out any potential physiological role of the oG6PD(B) transcript.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
August 2007
To better understand the structure and the function of ovine glucose 6-phosphate dehydrogenase (G6PD) promoter region, a genome-walking procedure was followed to isolate and sequence a 1628 bp fragment, containing the 5' regulatory region of the G6PD gene. In silico analysis of the sequence showed many conserved blocks and features with other known mammalian G6PD promoter regions. The analysis also revealed the presence of one TATA box, three GC boxes, two E-boxes and several binding sites for Stimulating Protein 1 (Sp1) and Activator Protein 2 (AP2).
View Article and Find Full Text PDFGlucose 6-phosphate dehydrogenase (G6PD) plays an important role in ruminant's lipogenesis, as it provides necessary compounds of NADPH for the synthesis of fatty acids catalyzing the first committed reaction in the pentose phosphate pathway. In this work the full length ovine glucose 6-phosphate dehydrogenase cDNA was isolated using a polymerase chain reaction based strategy. Two isoforms (OG6PDA and OG6PDB) were detected encoding a protein of 515 and 524 amino acids, respectively.
View Article and Find Full Text PDF