Background: Neuroendocrine (NE) cells promote the progression of prostate cancer to a castration-resistant state through the production of paracrine growth factors. We have demonstrated this principle using in vitro and in vivo proliferative endpoints; however, the contributions of NE-derived pro-survival factors and anti-apoptosis to this phenomenon have not been thoroughly investigated.
Methods: Here, we utilized conditioned-medium (CM) from LNCaP cells, engineered to undergo NE differentiation, and examined its effects on PC3 and LNCaP cell survival.
Radiotherapy combined with androgen depletion is generally successful for treating locally advanced prostate cancer. However, radioresistance that contributes to recurrence remains a major therapeutic problem in many patients. In this study, we define the high-affinity neurotensin receptor 1 (NTR1) as a tractable new molecular target to radiosensitize prostate cancers.
View Article and Find Full Text PDF2-Methoxyestradiol (2ME2) is an endogenous estradiol metabolite that inhibits microtubule polymerization, tumor growth, and angiogenesis. Because prostate cancer is often treated with radiotherapy, and 2ME2 has shown efficacy as a single agent against human prostate carcinoma, we evaluated 2ME2 as a potential radiosensitizer in prostate cancer models. A dose-dependent decrease in mitogen-activated protein kinase phosphorylation was observed in human PC3 prostate cancer cells treated with 2ME2 for 18 h.
View Article and Find Full Text PDFThe neuroendocrine status of prostatic adenocarcinomas is considered a prognostic indicator for development of aggressive, androgen-independent disease. Neuroendocrine-like cells are thought to function by providing growth and survival signals to surrounding tumor cells, particularly following androgen ablation therapy. To test this hypothesis directly, LNCaP cells were engineered to inducibly express a constitutively activated form of the cyclic AMP-dependent protein kinase A catalytic subunit (caPKA), which was previously found upon transient transfection to be sufficient for acquisition of neuroendocrine-like characteristics and loss of mitotic activity.
View Article and Find Full Text PDFNeuroendocrine (NE) cells are found in prostate tumors, and their incidence is considered a promising prognostic indicator for the development of androgen-independent disease. NE cells are derived from non-NE prostate cancer cells and secrete factors that can act in a paracrine manner to stimulate the survival, growth, motility, and metastatic potential of prostatic carcinoma cells. Factors such as IL-6, epinephrine, and forskolin induce NE differentiation in prostate cancer cells; the mechanisms involve increases in intracellular cAMP, protein kinase A (PKA) activation and reduced intracellular calcium levels.
View Article and Find Full Text PDFThe constitutively active, truncated epidermal growth factor receptor EGFRvIII lacks the ability of EGF binding due to a deletion of the NH(2)-terminal domain. EGFRvIII confers increased tumorigenicity, is coexpressed with EGFR wild type (wt) in human carcinoma and malignant glioma cells when grown as xenografts, but is not expressed in vitro. The effects of EGFRvIII expression on cellular radiation responses were studied in Chinese hamster ovary (CHO) cells transfected with plasmids expressing EGFRvIII (CHO.
View Article and Find Full Text PDFSelective inhibition of the epidermal growth factor receptor or mitogen-activated protein kinase (MAPK) results in radiosensitization of cancer cells. One potential mechanism involves cAMP-responsive element-binding protein, which is activated by radiation via the epidermal growth factor receptor/MAPK pathway and which regulates synthesis of proliferating cell nuclear antigen (PCNA), a protein involved in repair of ionizing radiation-induced DNA damage. To test for a role of CREB in cellular radiosensitivity, CHO cells were transfected with plasmids expressing dominant-negative CREB mutants (CR133 or KCREB), and various end-points were measured 48 h later.
View Article and Find Full Text PDFIonizing radiation (1-5 Gy) activates the epidermal growth factor receptor (EGFR), a major effector of the p42/44 mitogen-activated protein kinase (MAPK) pathway. MAPK and its downstream effector, p90 ribosomal S6 kinase (p90RSK), phosphorylate transcription factors involved in cell proliferation. To establish the role of the EGFR/MAPK pathway in radiation-induced transcription factor activation, MDA-MB-231 human breast carcinoma cells were examined using specific inhibitors of signaling pathways.
View Article and Find Full Text PDFBackground And Purpose: We have tested the camptothecin analogs, RFS-2000 or CPT-11, in combination with both etoposide and ionizing radiation in vitro to examine the radiation enhancing potential of topoisomerase I plus topoisomerase II (Topo I+Topo II) inhibition in human cancer cells.
Materials And Methods: H460 human lung carcinoma cells were plated and treated with 10nM RFS-2000 or 4.5microM CPT-11 for 4h.