PIM-1 kinase is a serine-threonine phosphorylating enzyme with implications in multiple types of malignancies, including prostate, breast, and blood cancers. Developing better search methodologies for PIM-1 kinase inhibitors may be a good strategy to speed up the discovery of an oncological drug approved for targeting this specific kinase. Computer-aided screening methods are promising approaches for the discovery of novel therapeutics, although certain limitations should be addressed.
View Article and Find Full Text PDFOne of the most commonly discussed topics in the field of drug discovery is the continuous search for anticancer therapies, in which small‑molecule development plays an important role. Although a number of techniques have been established over the past decades, one of the main methods for drug discovery and development is still represented by rational, ligand‑based drug design. However, the success rate of this method could be higher if not affected by cognitive bias, which renders many potential druggable scaffolds and structures overlooked.
View Article and Find Full Text PDFThe major impact produced by the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) focused many researchers attention to find treatments that can suppress transmission or ameliorate the disease. Despite the very fast and large flow of scientific data on possible treatment solutions, none have yet demonstrated unequivocal clinical utility against coronavirus disease 2019 (COVID‑19). This work represents an exhaustive and critical review of all available data on potential treatments for COVID‑19, highlighting their mechanistic characteristics and the strategy development rationale.
View Article and Find Full Text PDFProtein kinases play a pivotal role in signal transduction, protein synthesis, cell growth and proliferation. Their deregulation represents the basis of pathogenesis for numerous diseases such as cancer and pathologies with cardiovascular, nervous and inflammatory components. Protein kinases are an important target in the pharmaceutical industry, with 48 protein kinase inhibitors (PKI) already approved on the market as treatments for different afflictions including several types of cancer.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as Apo2L, has been investigated in the past decade for its promising anticancer activity due to its ability to selectively induce apoptosis in tumoral cells by binding to TRAIL receptors (TRAIL-R). Macromolecules such as agonistic monoclonal antibodies and recombinant TRAIL have not proven efficacious in clinical studies, therefore several small molecules acting as TRAIL-R agonists are emerging in the scientific literature. In this work we focus on systemizing these drug molecules described in the past years, in order to better understand and predict the requirements for a novel anti-tumoral therapy based on the TRAIL-R-induced apoptotic mechanism.
View Article and Find Full Text PDFTargeting beta-secretase 1, also known as beta-amyloid precursor protein-cleaving enzyme (BACE-1) for the inhibition of amyloid production, has been intensely studied in the last decades in the search for stopping Alzheimer's disease (AD) progression. The chances of finding a druggable BACE-1 inhibitor may be increased by drug repurposing, as this kind of molecules already fulfil certain requirements needed for further advancement. The study describes the development and application of a data-mining method based on molecular frameworks and descriptor values of tested BACE-1 inhibitors, suitable for filtering large compound databases, in order to find molecules with high potency against this protease.
View Article and Find Full Text PDF