Publications by authors named "George McAllister"

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin () gene. We report the design of a series of pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of mRNA transcripts and protein levels.

View Article and Find Full Text PDF

Huntington's disease (HD) is a lethal autosomal dominant neurodegenerative disorder resulting from a CAG repeat expansion in the huntingtin () gene. The product of translation of this gene is a highly aggregation-prone protein containing a polyglutamine tract >35 repeats (mHTT) that has been shown to colocalize with histone deacetylase 4 (HDAC4) in cytoplasmic inclusions in HD mouse models. Genetic reduction of HDAC4 in an HD mouse model resulted in delayed aggregation of mHTT, along with amelioration of neurological phenotypes and extended lifespan.

View Article and Find Full Text PDF

Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles.

View Article and Find Full Text PDF

The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin gene that results in expression of a mutant huntingtin protein (mHTT) containing an expanded polyglutamine tract in the amino terminus. A number of therapeutic approaches that aim to reduce mHTT expression either locally in the CNS or systemically are in clinical development. We have previously described sensitive and selective assays that measure human HTT proteins either in a polyglutamine-independent (detecting both mutant expanded and non-expanded proteins) or in a polyglutamine length-dependent manner (detecting the disease-causing polyglutamine repeats) on the electrochemiluminescence Meso Scale Discovery detection platform.

View Article and Find Full Text PDF

Our group has recently shown that brain-penetrant ataxia telangiectasia-mutated (ATM) kinase inhibitors may have potential as novel therapeutics for the treatment of Huntington's disease (HD). However, the previously described pyranone-thioxanthenes (e.g.

View Article and Find Full Text PDF

Using an iterative structure-activity relationship driven approach, we identified a CNS-penetrant 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO, ) with a pharmacokinetic profile suitable for probing class IIa histone deacetylase (HDAC) inhibition in vivo. Given the lack of understanding of endogenous class IIa HDAC substrates, we developed a surrogate readout to measure compound effects in vivo, by exploiting the >100-fold selectivity compound exhibits over class I/IIb HDACs. We achieved adequate brain exposure with compound in mice to estimate a class I/IIb deacetylation EC, using class I substrate H4K12 acetylation and global acetylation levels as a pharmacodynamic readout.

View Article and Find Full Text PDF

Genetic and pharmacological evidence indicates that the reduction of ataxia telangiectasia-mutated (ATM) kinase activity can ameliorate mutant huntingtin (mHTT) toxicity in cellular and animal models of Huntington's disease (HD), suggesting that selective inhibition of ATM could provide a novel clinical intervention to treat HD. Here, we describe the development and characterization of ATM inhibitor molecules to enable in vivo proof-of-concept studies in HD animal models. Starting from previously reported ATM inhibitors, we aimed with few modifications to increase brain exposure by decreasing P-glycoprotein liability while maintaining potency and selectivity.

View Article and Find Full Text PDF

Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models.

View Article and Find Full Text PDF

The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington's disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues.

View Article and Find Full Text PDF

Huntington's disease (HD) is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease.

View Article and Find Full Text PDF

Inhibition of class IIa histone deacetylase (HDAC) enzymes have been suggested as a therapeutic strategy for a number of diseases, including Huntington's disease. Catalytic-site small molecule inhibitors of the class IIa HDAC4, -5, -7, and -9 were developed. These trisubstituted diarylcyclopropanehydroxamic acids were designed to exploit a lower pocket that is characteristic for the class IIa HDACs, not present in other HDAC classes.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors have received considerable attention as potential therapeutics for a variety of cancers and neurological disorders. Recent publications on a class of pimelic diphenylamide HDAC inhibitors have highlighted their promise in the treatment of the neurodegenerative diseases Friedreich's ataxia and Huntington's disease, based on efficacy in cell and mouse models. These studies' authors have proposed that the unique action of these compounds compared to hydroxamic acid-based HDAC inhibitors results from their unusual slow-on/slow-off kinetics of binding, preferentially to HDAC3, resulting in a distinctive pharmacological profile and reduced toxicity.

View Article and Find Full Text PDF

We describe the validation of a serum-based test developed by Rules-Based Medicine which can be used to help confirm the diagnosis of schizophrenia. In preliminary studies using multiplex immunoassay profiling technology, we identified a disease signature comprised of 51 analytes which could distinguish schizophrenia (n = 250) from control (n = 230) subjects. In the next stage, these analytes were developed as a refined 51-plex immunoassay panel for validation using a large independent cohort of schizophrenia (n = 577) and control (n = 229) subjects.

View Article and Find Full Text PDF

The role for Wnt signaling modulation during synaptogenesis, neurogenesis and cell fate specification have been well characterized. In contrast, the roles for Wnt signaling pathways in the regulation of synaptic plasticity and adult physiology are only starting to be elucidated. Here, we have identified a novel series of Wnt pathway small molecule modulators, and report that these and other small molecules targeting the Wnt pathway acutely enhance excitatory transmission in adult hippocampal preparations.

View Article and Find Full Text PDF

The receptor tyrosine kinase product of the anaplastic lymphoma kinase (ALK) gene has been implicated in oncogenesis as a product of several chromosomal translocations, although its endogeneous role in the hematopoietic and neural systems has remained poorly understood. We describe that the generation of animals homozygous for a deletion of the ALK tyrosine kinase domain leads to alterations in adult brain function. Evaluation of adult ALK homozygotes (HOs) revealed an age-dependent increase in basal hippocampal progenitor proliferation and alterations in behavioral tests consistent with a role for this receptor in the adult brain.

View Article and Find Full Text PDF

The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation.

View Article and Find Full Text PDF

Adult mouse subventricular zone (SVZ) neural progenitor cells (NPCs) retain the capacity to generate multiple lineages in vitro and in vivo. Thus far, the mechanisms involved in the regulation of these cells have not been well elucidated. We have carried out RNA profiling of adult SVZ cell cultures undergoing differentiation, to identify pathways that regulate progenitor cell proliferation and to define a set of transcripts that can be used as molecular tools in the drug discovery process.

View Article and Find Full Text PDF

Neural stem cells reside in the subventricular zone and the dentate gyrus of the hippocampus in adult mammalian brain. In the hippocampus, a number of factors are reported to modulate the rate of neural progenitor proliferation in the hippocampus, such as exercise, corticosteroids, and many pharmacological agents including several classes of antidepressants. It is currently unclear whether this increased proliferation is physiologically relevant, but it provides a potentially useful biomarker to assess novel antidepressant compounds.

View Article and Find Full Text PDF

The superfamily of GPCRs have diverse biological roles, transducing signals from a range of stimuli, from photon recognition by opsins to neurotransmitter regulation of neuronal function. Of the many identified genes encoding GPCRs, >130 are orphan receptors ( i.e.

View Article and Find Full Text PDF

We have developed an assay system suitable for assessment of compound action on the Edg4 subtype of the widely expressed lysophosphatidic acid (LPA)-responsive Edg receptor family. Edg4 was stably overexpressed in the rat hepatoma cell line Rh 7777, and a Ca(2+)-based FLIPR assay developed for measurement of functional responses. In order to investigate the mechanisms linking Edg4 activation to cytosolic Ca(2+) elevation, we have also studied LPA signalling in a human neuroblastoma cell line that endogenously expresses Edg4.

View Article and Find Full Text PDF

Antidepressants are widely prescribed in the treatment of depression, although the mechanism of how they exert their therapeutic effects is poorly understood. To shed further light on their mode of action, we have attempted to identify a common proteomic signature in guinea pig brains after chronic treatment with two different antidepressants. Both fluoxetine and the substance P receptor (NK(1)R) antagonist (SPA) L-000760735 altered cortical expression of multiple heat shock protein 60 forms along with neurofilaments and related proteins that are critical determinants of synaptic structure and function.

View Article and Find Full Text PDF

This paper describes the use of fluorescence two-dimensional differential in-gel electrophoresis in a multiplex analysis of two distinct proteomes. As a model system, cerebral cortex tissues were analyzed from neurokinin1 receptor knockout (NK(1)R-/-) and wild type (NK(1)R+/+) mice in an attempt to identify molecular pathways involved in the function of this protein. Paired NK(1)R-/- and NK(1)R+/+ samples were labeled with fluorescent Cy3 and Cy5 dyes and electrophoresed on the same two-dimensional gels.

View Article and Find Full Text PDF

Transgenic, knockout and knockin mice are useful tools for linking specific genes with behaviour and other complex biological processes. However, complications arising due to compensatory changes, genetic background differences and other factors could lead to difficulty in interpreting the resulting changes in phenotype. We have used fluorescence two-dimensional differential in-gel electrophoresis in combination with matrix-assisted laser desorption/ionization-time of flight mass fingerprinting to investigate the possibility that distinct genetic alterations can lead to common protein expression changes in genetically modified mice.

View Article and Find Full Text PDF

Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined whether oligomeric complexes were formed by co-immunoprecipitation and immunoblot analysis.

View Article and Find Full Text PDF