An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function.
View Article and Find Full Text PDFThe purpose of this study was to develop a dynamic tunable focal distance graded-refractive-index lens rod-based high-speed 3-D swept-source (SS) optical coherence tomography (OCT) endoscopic system and demonstrate real-time in vivo, high-resolution (10-microm) imaging of pleural-based malignancies in an animal model. The GRIN lens-based 3-D SS OCT system, which images at 39 fps with 512 A-lines per frame, was able to capture images of and detect abnormalities during thoracoscopy in the thoracic cavity, including the pleura, chest wall, pericardium, and the lungs. The abnormalities were confirmed by histological evaluation and compared to OCT findings.
View Article and Find Full Text PDFTo understand the influence of topographical variations in collagen fibril orientation of articular cartilage on optical phase images of polarization-sensitive optical coherence tomography (PS-OCT), we use polarized light microscopy (PLM) to quantify the orientation and phase retardation of the collagen architecture in cartilage at the same locations imaged by PS-OCT. The PS-OCT experiments demonstrate that articular cartilage has normal variations in polarization sensitivity at different locations over an intact bovine tibial plateau. Articular cartilage is not polarization sensitive along the vertical axis on the medial edge and central areas of the joint surface, but becomes polarization sensitive on the lateral edge of the tibia.
View Article and Find Full Text PDFBackground And Objective: Previous investigations have reported evidence of wavelength dependence on cortical bone ablation. This study used mid-infrared laser wavelengths generated by a free electron laser (FEL) and mass removal measurements to further examine the ablation efficiency of a wavelength (2.79 microm) not previously reported and three wavelengths (2.
View Article and Find Full Text PDFThe directional polarization sensitivity of articular cartilage and meniscus is investigated by use of polarization-sensitive optical coherence tomography (PS-OCT) by varying the angle of incident illumination. Experimental results show that when the incident light is perpendicular to the tissue surface, normal articular cartilage demonstrates little polarization sensitivity, while meniscus demonstrates strong polarization sensitivity. Differences in optical phase retardation produced by articular cartilage and meniscus are observed when the incident angle of the scanning light beam is adjusted between 0 and 90 deg relative to the tissue surface.
View Article and Find Full Text PDFBackground And Objectives: Previous studies have demonstrated that optical coherence tomography (OCT) could be used to delineate alterations in the microstructure of cartilage, and have suggested that changes in the polarization state of light as detected by OCT could provide information on the birefringence properties of articular cartilage as influenced by disease. In this study we have used both OCT and polarization sensitive optical coherence tomography (PS-OCT) technologies to evaluate normal and abnormal bovine articular cartilage according to established structural, organizational, and birefringent characteristics of degenerative joint disease (DJD) in order to determine if this technology can be used to differentiate various stages of DJD as a minimally invasive imaging tool.
Materials And Methods: Fresh bovine femoral-tibial joints were obtained from an abattoir, and 45 cartilage specimens were harvested from 8 tibial plateaus.
Background And Objective: The aim of this study was to evaluate areas of collateral thermal injury and crater morphology for evidence of wavelength-dependent effects on the ablation of articular cartilage and fibro-cartilage (meniscus) using selected mid-IR wavelengths produced by a free electron laser.
Study Design/materials And Methods: Two types of cartilage, articular cartilage and fibro-cartilage were used in the study. The wavelengths (lambda) evaluated were 2.
Osteoarthritis Cartilage
April 2005
Objective: To assess the ability of nonlinear optical microscopy (NLOM) to image ex vivo healthy and degenerative bovine articular cartilage.
Method: Fresh bovine femoral-tibial joints were obtained from an abattoir. Articular cartilage specimens were harvested from the tibial plateau.
Background And Objective: The wavelength and tissue-composition dependence of cartilage ablation was examined using selected mid-infrared laser wavelengths.
Study Design/materials And Methods: The mass removal produced by pulsed laser ablation of articular and fibro-cartilage (meniscus) were measured. The wavelengths examined were 2.
Laser rhinoscopy was used to treat a nasal obstruction in a captive California sea lion (Zalophus californianus). The rehabilitated, adult, female sea lion developed mucopurulent, intermittent, bilateral nasal discharge and functional nasal obstruction 20 mo after acquisition by the Aquarium of the Pacific in Long Beach, California. A 3-mm-thick soft tissue structure spanning the region between the soft and hard palates, a deviated nasal septum, and several nasopharyngeal polyps were identified.
View Article and Find Full Text PDFInfrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum.
View Article and Find Full Text PDFLight produced by a laser differs from incandescent light in that it is monochromatic, coherent, and intense; and it is these properties that allow lasers to be used as such unique tools in biomedical research and patient care. The effect of a laser beam on tissue is dependent on the optical and mechanical properties of the tissue, and the wavelength, power parameters, and time domains of the laser exposure. Understanding these principles is not only important for the selection of an appropriate laser system for a specific application, but also is essential for that application to be successful.
View Article and Find Full Text PDF