Publications by authors named "George L Hamilton"

Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules.

View Article and Find Full Text PDF

The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them.

View Article and Find Full Text PDF

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking.

View Article and Find Full Text PDF

The scaffold protein PSD-95 links postsynaptic receptors to sites of presynaptic neurotransmitter release. Flexible linkers between folded domains in PSD-95 enable a dynamic supertertiary structure. Interdomain interactions within the PSG supramodule, formed by DZ3, H3, and uanylate Kinase domains, regulate PSD-95 activity.

View Article and Find Full Text PDF

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels.

View Article and Find Full Text PDF

Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multi-step TPP binding process involving multiple riboswitch configurational ensembles and that Mg2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg2+ ¬¬in the aptamer domain constituting this mechanism are unknown.

View Article and Find Full Text PDF

Forkhead box P (FoxP) proteins are unique transcription factors that spatiotemporally regulate gene expression by tethering two chromosome loci together via functional domain-swapped dimers formed through their DNA-binding domains. Further, the differential kinetics on this dimerization mechanism underlie an intricate gene regulation network at physiological conditions. Nonetheless, poor understanding of the structural dynamics and steps of the association process impedes to link the functional domain swapping to human-associated diseases.

View Article and Find Full Text PDF

Integrative and hybrid methods have the potential to bridge long-standing knowledge gaps in structural biology. These methods will have a prominent role in the future of the field as we make advances toward a complete, unified representation of biology that spans the molecular and cellular scales. The Department of Physics and Astronomy at Clemson University hosted The Future of Integrative Structural Biology workshop on April 29, 2017 and partially sponsored by partially sponsored by a program of the Oak Ridge Associated Universities (ORAU).

View Article and Find Full Text PDF